Теорема Пифагора: история вопроса, доказательства, примеры практического применения. Способы доказательства теоремы Пифагора

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

ДОКАЗАТЕЛЬСТВА ТЕОРЕМЫ ПИФАГОРА

Доказательства, основанные на использовании понятия равновеликости фигур.

При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.

На рис. 2 изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c 2 = a 2 + b 2 . Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а

сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

Аддитивные доказательства.

Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе.

Доказательство Энштейна (рис. 3) основано на разложении квадрата, построенного на гипотенузе, на 8 треугольников.

Здесь: ABC – прямоугольный треугольник с прямым углом C; CÎMN; CK^MN; PO||MN; EF||MN.

Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе.

На рис. 4 приведено доказательство теоремы Пифагора с помощью разбиения ан-Найризия – средневекового багдадского комментатора «Начал» Евклида. В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника. Здесь: ABC – прямоугольный треугольник с прямым углом C; DE = BF.

Докажите теорему с помощью этого разбиения.

· На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (рис. 5, здесь ABC – прямоугольный треугольник с прямым углом C).

· Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис. 6. Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе.

· Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.

Доказательства методом построения.

Сущность этого метода состоит в том, что к квадратам, построенным на катетах, и к квадрату, построенному на гипотенузе, присоединяют равные фигуры таким образом, чтобы получились равновеликие фигуры.

· На рис. 7 изображена обычная Пифагорова фигура – прямоугольный треугольник ABC с построенными на его сторонах квадратами. К этой фигуре присоединены треугольники 1 и 2, равные исходному прямоугольному треугольнику.

Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ. Здесь CÎEP, прямая EP делит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая CM делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра A отображает четырехугольник AEPB на четырехугольник ACMQ.

· На рис. 8 Пифагорова фигура достроена до прямоугольника, стороны которого параллельны соответствующим сторонам квадратов, построенных на катетах. Разобьем этот прямоугольник на треугольники и прямоугольники. Из полученного прямоугольника вначале отнимем все многоугольники 1, 2, 3, 4, 5, 6, 7, 8, 9, остался квадрат, построенный на гипотенузе. Затем из того же прямоугольника отнимем прямоугольники 5, 6, 7 и заштрихованные прямоугольники, получим квадраты, построенные на катетах.

Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.

· Рис. 9 иллюстрирует доказательство, приведенное Нассир-эд-Дином (1594 г.). Здесь: PCL – прямая;

KLOA = ACPF = ACED = a 2 ;

LGBO = CBMP = CBNQ = b 2 ;

AKGB = AKLO + LGBO = c2;

отсюда c 2 = a 2 + b 2 .

Рис. 11 иллюстрирует еще одно более оригинальное доказательство, предложенное Гофманом.

Здесь: треугольник ABC с прямым углом C; отрезок BF перпендикулярен CB и равен ему, отрезок BE перпендикулярен AB и равен ему, отрезок AD перпендикулярен AC и равен ему; точки F, C, D принадлежат одной прямой; четырехугольники ADFB и ACBE равновелики, так как ABF=ECB; треугольники ADF и ACE равновелики; отнимем от обоих равновеликих четырехугольников общий для них треугольник ABC, получим

Алгебраический метод доказательства.

· Рис. 12 иллюстрирует доказательство великого индийского математика Бхаскари (знаменитого автора Лилавати, XII в.). Рисунок сопровождало лишь одно слово: СМОТРИ! Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие.

· Приведем в современном изложении одно из таких доказательств, принадлежащих Пифагору.

На рис. 13 ABC – прямоугольный, C – прямой угол, CM^AB, b1 – проекция катета b на гипотенузу, a1 – проекция катета a на гипотенузу, h – высота треугольника, проведенная к гипотенузе.

Из того, что DABC подобен DACM следует

b 2 = cb 1 ; (1)

из того, что DABC подобен DBCM следует

a 2 = ca 1 . (2)

Складывая почленно равенства (1) и (2), получим a 2 + b 2 = cb 1 + ca 1 = c(b 1 + a 1) = c 2 .

Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.

Доказательство Мёльманна (рис. 14).

Площадь данного прямоугольного треугольника, с одной стороны, равна с другой, где p – полупериметр треугольника, r – радиус вписанной в него окружности Имеем:

откуда следует, что c2=a2+b2.

Доказательство Гарфилда.

На рисунке 15 три прямоугольных треугольника составляют трапецию. Поэтому площадь этой фигуры можно находить по формуле площади прямоугольной трапеции, либо как сумму площадей трех треугольников. В первом случае эта площадь равна

во втором

Приравнивая эти выражения, получаем теорему Пифагора.

Существует много доказательств теоремы Пифагора, проведенных как каждым из описанных методов, так и с помощью сочетания различных методов. Завершая обзор примеров различных доказательств, приведем еще рисунки, иллюстрирующие восемь способов, на которые имеются ссылки в «Началах» Евклида (рис. 16 – 23). На этих рисунках Пифагорова фигура изображена сплошной линией, а дополнительные построения – пунктирной.

Как уже было сказано выше, древние египтяне более 2000 лет тому назад практически пользовались свойствами треугольника со сторонами 3, 4, 5 для построения прямого угла, т. е. фактически применяли теорему, обратную теореме Пифагора. Приведем доказательство этой теоремы, основанное на признаке равенства треугольников (т. е. такое, которое можно очень рано ввести в школе). Итак, пусть стороны треугольника ABC (рис. 24) связаны соотношением

c 2 = a 2 + b 2 . (3)

Докажем, что этот треугольник прямоугольный.

Построим прямоугольный треугольник A1B1C1 по двум катетам, длины которых равны длинам a и b катетов данного треугольника (рис. 25).

Пусть длина гипотенузы построенного треугольника равна c1. Так как построенный треугольник прямоугольный, то по теореме Пифагора имеем: c 1 2 = a 2 + b 2 . (4)

Сравнивая соотношения (3) и (4), получаем, что

c 1 2 = c 2 , или c 1 = c.

Таким образом, треугольники – данный и построенный – равны, так как имеют по три соответственно равные стороны. Угол C1 прямой, поэтому и угол C данного треугольника тоже прямой.

Доказательства методом разложения

Существует целый ряд доказательств теоремы Пифагора, в которых квадраты, построенные на катетах и на гипотенузе, разрезаются так, что каждой части квадрата,построенного на гипотенузе, соответствует часть одного из квадратов, построенных на катетах. Во всех этих случаях для понимания доказательства достаточно одного взгляда на чертеж; рассуждение здесь может быть ограничено единственным словом: "Смотри!", как это делалось в сочинениях древних индусских математиков. Следует, однако, заметить, что на самом деле доказательство нельзя считать полным, пока мы не доказали равенства всех соответствующих друг другу частей. Это почти всегда довольно не трудно сделать, однако может (особенно при большом количестве частей) потребовать довольно продолжительной работы.

Доказательство Эпштейна

Начнем с доказательства Эпштейна(рис. 1) ; его преимуществом является то, что здесь в качестве составных частей разложения фигурируют исключительно треугольники. Чтобы разобраться в чертеже, заметим, что прямая CD проведена перпендикулярно прямой EF.

Разложение на треугольники можно сделать и более наглядным, чем на рисунке.

Доказательство Нильсена.

На рисунке вспомогательные линии изменены по предложению Нильсена.

Доказательство Бетхера.

На рисунке дано весьма наглядное разложение Бетхера.

Доказательство Перигаля.

В учебниках нередко встречается разложение указанное на рисунке (так называемое "колесо с лопастями"; это доказательство нашел Перигаль). Через центр O квадрата, построенного на большем катете, проводим прямые, параллельную и перпендикулярную гипотенузе. Соответствие частей фигуры хорошо видно из чертежа.

Доказательство Гутхейля.

Изображенное на рисунке разложение принадлежит Гутхейлю; для него характерно наглядное расположение отдельных частей, что позволяет сразу увидеть, какие упрощения повлечет за собой случай равнобедренного прямоугольного треугольника.

Доказательство 9 века н.э.

Ранее были представлены только такие доказательства, в которых квадрат, построенный на гипотенузе, с одной стороны, и квадраты,построенные на катетах, с другой, складывались из равных частей. Такие доказательства называются доказательствами при помощи сложения ("аддитивными доказательствами") или, чаще, доказательствами методом разложения. До сих пор мы исходили из обычного расположения квадратов, построенных на соответствующих сторонах треугольника, т. е. вне треугольника. Однако во многих случаях более выгодно другое расположение квадратов.

На рисунке квадраты, построенные на катетах, размещены ступенями один рядом с другим. Эту фигуру, которая встречается в доказательствах, датируемых не позднее, чем 9 столетием н. э., индусы называли "стулом невесты". Способ построения квадрата со стороной, равной гипотенузе, ясен из чертежа. Общая часть двух квадратов, построенных на катетах, и квадрата, построенного на гипотенузе, - неправильный заштрихованный пятиугольник 5. Присоединив к нему треугольники 1 и 2, получим оба квадрата, построенные на катетах; если же заменить треугольники 1 и 2 равными им треугольниками 3 и 4, то получим квадрат, построенный на гипотенузе. На рисунках ниже изображены два различных расположения близких к тому, которое дается на первом рисунке.

Доказательства методом дополнения

Доказательство первое.

Наряду с доказательствами методом сложения можно привести примеры доказательств при помощи вычитания, называемых также доказательствами методом дополнения. Общая идея таких доказательств заключается в следующем.

От двух равных площадей нужно отнять равновеликие части так, чтобы в одном случае остались два квадрата, построенные на катетах, а в другом- квадрат, построенный на гипотенузе. Ведь если в равенствах

В-А=С и В 1 -А 1 =С 1

часть А равновелика части А 1 , а часть В равновелика В 1 , то части С и С 1 также равновелики.

Поясним этот метод на примере. На рис. к обычной пифагоровой фигуре приставлены сверху и снизу треугольники 2 и 3, равные исходному треугольнику 1. Прямая DG обязательно пройдет через C. Заметим теперь (далее мы это докажем), что шестиугольники DABGFE и CAJKHB равновелики. Если мы от первого из них отнимем треугольники 1 и 2, то останутся квадраты, построенные на катетах, а если от второго шестиугольника отнимем равные треугольники 1 и 3, то останется квадрат,построенный на гипотенузе. Отсюда вытекает, что квадрат, построенный на гипотенузе, равновелик сумме квадратов,построенных на катетах.

Остается доказать, что наши шестиугольники равновелики. Заметим, что прямая DG делит верхний шестиугольник на равновеликие части; то же можно сказать о прямой CK и нижнем шестиугольнике. Повернем четырехугольник DABG, составляющий половину шестиугольника DABGFE, вокруг точки А по часовой стрелке на угол 90; тогда он совпадет с четырехугольником CAJK, составляющим половину шестиугольника CAJKHB. Поэтому шестиугольники DABGFE и CAJKHB равновелики.

Другое доказательство методом вычитания.

Познакомимся с другим доказательством методом вычитания. Знакомый нам чертеж теоремы Пифагора заключим в прямоугольную рамку, направления сторон которой совпадают с направлениями катетов треугольника. Продолжим некоторые из отрезков фигуры так, как указано на рисунке, при этом прямоугольник распадается на несколько треугольников, прямоугольников и квадратов. Выбросим из прямоугольника сначала несколько частей так чтобы остался лишь квадрат, построенный на гипотенузе. Эти части следующие:

1. треугольники 1, 2, 3, 4;

2. прямоугольник 5;

3. прямоугольник 6 и квадрат 8;

4. прямоугольник 7 и квадрат 9;

Затем выбросим из прямоугольника части так, чтобы остались только квадраты, построенные на кататах. Этими частями будут:

1. прямоугольники 6 и 7;

2. прямоугольник 5;

3. прямоугольник 1(заштрихован);

4. прямоугольник 2(заштрихован);

Нам осталось лишь показать, что отнятые части равновелики. Это легко видеть в силу расположения фигур. Из рисунка ясно, что:

1. прямоугольник 5 равновелик самому себе;

2. четыре треугольника 1,2,3,4 равновелики двум прямоугольникам 6 и 7;

3. прямоугольник 6 и квадрат 8, взятые вместе, равновелики прямоугольнику 1 (заштрихован);

4. прямоугольник 7 вместе с квадратом 9 равновелики прямоугольнику 2(заштрихован);

Доказательство закончено.

Другие доказательства

Доказательство Евклида

Это доказательство было приведено Евклидом в его "Началах". По свидетельству Прокла (Византия), оно придумано самим Евклидом. Доказательство Евклида приведено в предложении 47 первой книги "Начал".

На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник ICEL - квадрату АСКС. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе.

В самом деле, треугольники ABD и BFC равны по двум сторонам и углу между ними:

FB = AB, BC = BD

РFBC = d + РABC = РABD

SABD = 1/2 S BJLD,

так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично

(BF-общее основание, АВ-общая высота). Отсюда, учитывая, что

Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что

SABFH+SACKG= SBJLD+SJCEL= SBCED,

что и требовалось доказать.

Доказательство Хоукинсa.

Приведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого- трудно сказать.

Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A"CB". Продолжим гипотенузу A"В" за точку A" до пересечения с линией АВ в точке D. Отрезок В"D будет высотой треугольника В"АВ. Рассмотрим теперь заштрихованный четырехугольник A"АВ"В. Его можно разложить на два равнобедренных треугольника САA" и СВВ" (или на два треугольника A"В"А и A"В"В).

Пифагор принес в жертву 100 быков. Карикатуры Доказательство теоремы Пифагора ... гипотенузы равен сумме квадратов катетов (Теорема Пифагора ).Доказательство :1. Докажем, что прямоугольник BJLD равновелик...

  • Школа Пифагора

    Реферат >> Философия

    Изложение системы самого Учителя. 1. БИОГРАФИЯ ПИФАГОРА Пифагор , древнегреческий философ, религиозный и политический деятель... изучение свойств целых чисел и пропорций, доказательство теоремы Пифагора и др. Страсть к музыке и поэзии великого...

  • Аргументация и доказательство . Состав аргументации субъект, структура

    Реферат >> Логика

    Приобретает характер строгого рассуждения и именуется доказательством . Доказательство – это логическая операция обоснования... конкретной области знаний. Так, в процессе доказательства теоремы Пифагора в геометрии используют ранее принятые определения...

  • Теоремы тригонометрии

    Реферат >> Математика

    На любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы . Египетский треугольник с соотношением сторон... . Ч.т.д. Обобщенная теорема Пифагора . Теорему косинусов называют иногда обобщенной теоремой Пифагора . Такое название...

  • Вокруг да около

    История теоремы Пифагора уходит в века и тысячелетия. В этой статье, мы не будем подробно останавливаться на исторических темах. Для интриги, скажем только, что, по-видимому, эту теорему знали еще древне-египетские жрецы, жившие более 2000 лет до нашей эры. Для тех, кому любопытно, вот ссылка на статью в Википедии .

    Прежде всего, хочется для полноты изложения привести здесь доказательство теоремы Пифагора, которое, по моему мнению, наиболее элегантно и очевидно. На рисунке выше изображено два одинаковых квадрата: левый и правый. Из рисунка видно, что слева и справа площади закрашенных фигур равны, так как в каждом из больших квадратов закрашено по 4 одинаковых прямоугольных треугольника. А это означает, что и незакрашенные (белые) площади слева и справа тоже равны. Замечаем, что в первом случае площадь незакрашенной фигуры равна , а во втором - площадь незакрашенной области равна . Таким образом, . Теорема доказана!

    Как же назвать эти числа? Треугольниками не назовешь, ведь четыре числа никак не могут образовать треугольник. И тут! Как гром среди ясного неба

    Раз есть такие четверки чисел, значит должен быть геометрический объект с такими же свойствами, отраженными в этих числах!

    Теперь осталось только подобрать какой-то геометрический объект под это свойство, и все встанет на свои места! Конечно, предположение было чисто гипотетическое, и никакого подтверждения под собой не имело. Но что если это так!

    Начался перебор объектов. Звезды, многоугольники, правильные, неправильные, с прямым углом и так далее и тому подобное. Опять ничего не подходит. Что делать? И в этот момент Шерлок получает свою вторую зацепку.

    Надо повысить размерность! Раз тройке соответствуют треугольник на плоскости, значит четверке соответствует нечто трехмерное!

    О нет! Опять перебор вариантов! А в трехмерии гораздо, гораздо больше всевозможных геометрических тел. Попробуй перебрать их все! Но не все так плохо. Есть же еще прямой угол и другие зацепки! Что мы имеем? Египетские четверки чисел (пусть будут египетские, надо же их как-то называть), прямой угол (или углы) и некий трехмерный объект. Дедукция сработала! И… Полагаю, что догадливые читатели уже поняли, что речь идет о пирамидах, у которых при одной из вершин все три угла - прямые. Можно даже назвать их прямоугольными пирамидами по аналогии с прямоугольным треугольником.

    Новая теорема

    Итак, у нас есть все что нужно. Прямоугольные (!) пирамиды, боковые грани-катеты и секущая грань-гипотенуза . Пришло время нарисовать еще одну картинку.


    На картинке изображена пирамида с вершиной в начале прямоугольных координат (пирамида как бы лежит на боку). Пирамида образована тремя взаимно-перпендикулярными векторами, отложенными из начала координат вдоль координатных осей. То есть каждая боковая грань пирамиды - это прямоугольный треугольник с прямым углом при начале координат. Концы векторов определяют секущую плоскость и образуют грань-основание пирамиды.

    Теорема

    Пусть есть прямоугольная пирамида, образованная тремя взаимно-перпендикулярными векторами , у которой площади граней-катетов равны - , и площадь грани-гипотенузы - . Тогда

    Альтернативная формулировка: У четырехгранной пирамиды, у которой при одной из вершин все плоские углы прямые, сумма квадратов площадей боковых граней равна квадрату площади основания.

    Разумеется, если обычная теорема Пифагора формулируется для длин сторон треугольников, то наша теорема формулируется для площадей сторон пирамиды. Доказать эту теорему в трех измерениях очень просто, если вы немного знаете векторную алгебру.

    Доказательство

    Выразим площади через длины векторов .

    где .

    Площадь представим как половину площади параллелограмма, построенного на векторах и

    Как известно, векторное произведение двух векторов - это вектор, длина которого численно равна площади параллелограмма, построенного на этих векторах.
    Поэтому

    Таким образом,

    Что и требовалось доказать!

    Конечно, как у человека, профессионально занимающегося исследованиями, подобное в моей жизни уже случалось, и не раз. Но этот момент был самым ярким и самым запоминающимся. Я испытал полную гамму чувств, эмоций, переживаний первооткрывателя. От зарождения мысли, кристализации идеи, нахождения доказательства - до полного непонимания и даже неприятия, которое встретили мои идеи у моих друзей, знакомых и, как мне тогда казалось, у целого мира. Это было уникально! Я словно почувствовал себя в шкуре Галлилея, Коперника, Ньютона, Шредингера, Бора, Эйнштейна и многих многих других открывателей.

    Послесловие

    В жизни, все оказалось гораздо проще и прозаичнее. Я опоздал… Но на сколько! Всего-то навсего 18 лет! Под страшными продолжительными пытками и не с первого раза Гугл признался мне, что эта теорема была опубликована в 1996 году!

    Статья опубликована издательством Техасского технического университета. Авторы, профессиональные математики, ввели терминологию (которая, кстати, во многом совпала с моей) и доказали также и обобщенную теорему справедливую для пространства любой размерности большей единицы. Что же произойдет в размерностях более высоких, чем 3? Все очень просто: вместо граней и площадей будут гиперповерхности и многомерные объемы. А утверждение, конечно, останется все тем же: сумма квадратов объемов боковых граней равна квадрату объема основания, - просто количество граней будет больше, а объем каждой из них станет равен половине произведения векторов-образующих. Вообразить это почти невозможно! Можно только, как говорят философы, помыслить!

    Что удивительно, узнав о том, что такая теорема уже известна, я ничуть не расстроился. Где-то в глубине души я подозревал, что вполне возможно, я был не первый, и понимал, что нужно быть всегда к этому готовым. Но тот эмоциониальный опыт, который я получил, зажег во мне искру исследователя, которая, я уверен, теперь уже не угаснет никогда!

    P.S.

    Эрудированный читатель в комментариях прислал ссылку
    Теорема де Гуа

    Выдержка из Википедии

    В 1783 году теорема была представлена Парижской академии наук французским математиком Ж.-П. де Гуа, однако ранее она была известна Рене Декарту и до него Иоганну Фульгаберу (англ.), который, вероятно, первым открыл её в 1622 году. В более общем виде теорему сформулировал Шарль Тинсо (фр.) в докладе Парижской академии наук в 1774 году

    Так что я опоздал не на 18 лет, а как минимум на пару веков!

    Источники

    Читатели указали в комментариях несколько полезных ссылок. Вот эти и некоторые другие ссылки:

    В одном можно быть уверенным на все сто процентов, что на вопрос, чему равен квадрат гипотенузы, любой взрослый человек смело ответит: «Сумме квадратов катетов». Эта теорема прочно засела в сознании каждого образованного человека, но достаточно лишь попросить кого-либо ее доказать, и тут могут возникнуть сложности. Поэтому давайте вспомним и рассмотрим разные способы доказательства теоремы Пифагора.

    Краткий обзор биографии

    Теорема Пифагора знакома практически каждому, но почему-то биография человека, который произвел ее на свет, не так популярна. Это поправимо. Поэтому прежде чем изучить разные способы доказательства теоремы Пифагора, нужно кратко познакомиться с его личностью.

    Пифагор - философ, математик, мыслитель родом из Сегодня очень сложно отличить его биографию от легенд, которые сложились в память об этом великом человеке. Но как следует из трудов его последователей, Пифагор Самосский родился на острове Самос. Его отец был обычный камнерез, а вот мать происходила из знатного рода.

    Судя по легенде, появление на свет Пифагора предсказала женщина по имени Пифия, в чью честь и назвали мальчика. По ее предсказанию рожденный мальчик должен был принести много пользы и добра человечеству. Что вообще-то он и сделал.

    Рождение теоремы

    В юности Пифагор переехал с в Египет, чтобы встретиться там с известными египетскими мудрецами. После встречи с ними он был допущен к обучению, где и познал все великие достижения египетской философии, математики и медицины.

    Вероятно, именно в Египте Пифагор вдохновился величеством и красотой пирамид и создал свою великую теорию. Это может шокировать читателей, но современные историки считают, что Пифагор не доказывал свою теорию. А лишь передал свое знание последователям, которые позже и завершили все необходимые математические вычисления.

    Как бы там ни было, сегодня известна не одна методика доказательства данной теоремы, а сразу несколько. Сегодня остается лишь гадать, как именно древние греки производили свои вычисления, поэтому здесь рассмотрим разные способы доказательства теоремы Пифагора.

    Теорема Пифагора

    Прежде чем начинать какие-либо вычисления, нужно выяснить, какую теорию предстоит доказать. Теорема Пифагора звучит так: «В треугольнике, у которого один из углов равен 90 о, сумма квадратов катетов равна квадрату гипотенузы».

    Всего существует 15 разных способов доказательства теоремы Пифагора. Это достаточно большая цифра, поэтому уделим внимание самым популярным из них.

    Способ первый

    Сначала обозначим, что нам дано. Эти данные будут распространяться и на другие способы доказательств теоремы Пифагора, поэтому стоит сразу запомнить все имеющееся обозначения.

    Допустим, дан прямоугольный треугольник, с катетами а, в и гипотенузой, равной с. Первый способ доказательства основывается на том, что из прямоугольного треугольника нужно дорисовать квадрат.

    Чтобы это сделать, нужно к катету длиной а дорисовать отрезок равный катету в, и наоборот. Так должно получиться две равные стороны квадрата. Остается только нарисовать две параллельные прямые, и квадрат готов.

    Внутри получившейся фигуры нужно начертить еще один квадрат со стороной равной гипотенузе исходного треугольника. Для этого от вершин ас и св нужно нарисовать два параллельных отрезка равных с. Таким образом, получиться три стороны квадрата, одна из которых и есть гипотенуза исходного прямоугольного треугольники. Остается лишь дочертить четвертый отрезок.

    На основании получившегося рисунка можно сделать вывод, что площадь внешнего квадрата равна (а+в) 2 . Если заглянуть внутрь фигуры, можно увидеть, что помимо внутреннего квадрата в ней имеется четыре прямоугольных треугольника. Площадь каждого равна 0,5ав.

    Поэтому площадь равна: 4*0,5ав+с 2 =2ав+с 2

    Отсюда (а+в) 2 =2ав+с 2

    И, следовательно, с 2 =а 2 +в 2

    Теорема доказана.

    Способ два: подобные треугольники

    Данная формула доказательства теоремы Пифагора была выведена на основании утверждения из раздела геометрии о подобных треугольниках. Оно гласит, что катет прямоугольного треугольника - среднее пропорциональное для его гипотенузы и отрезка гипотенузы, исходящего из вершины угла 90 о.

    Исходные данные остаются те же, поэтому начнем сразу с доказательства. Проведем перпендикулярный стороне АВ отрезок СД. Основываясь на вышеописанном утверждении катеты треугольников равны:

    АС=√АВ*АД, СВ=√АВ*ДВ.

    Чтобы ответить на вопрос, как доказать теорему Пифагора, доказательство нужно проложить возведением в квадрат обоих неравенств.

    АС 2 =АВ*АД и СВ 2 =АВ*ДВ

    Теперь нужно сложить получившиеся неравенства.

    АС 2 + СВ 2 =АВ*(АД*ДВ), где АД+ДВ=АВ

    Получается, что:

    АС 2 + СВ 2 =АВ*АВ

    И, следовательно:

    АС 2 + СВ 2 =АВ 2

    Доказательство теоремы Пифагора и различные способы ее решения нуждаются в разностороннем подходе к данной задаче. Однако этот вариант является одним из простейших.

    Еще одна методика расчетов

    Описание разных способов доказательства теоремы Пифагора могут ни о чем не сказать, до тех самых пор пока самостоятельно не приступишь к практике. Многие методики предусматривают не только математические расчеты, но и построение из исходного треугольника новых фигур.

    В данном случае необходимо от катета ВС достроить еще один прямоугольный треугольник ВСД. Таким образом, теперь имеется два треугольника с общим катетом ВС.

    Зная, что площади подобных фигур имеют соотношение как квадраты их сходных линейных размеров, то:

    S авс * с 2 - S авд *в 2 =S авд *а 2 - S всд *а 2

    S авс *(с 2 -в 2)=а 2 *(S авд -S всд)

    с 2 -в 2 =а 2

    с 2 =а 2 +в 2

    Поскольку из разных способов доказательств теоремы Пифагора для 8 класса этот вариант едва ли подойдет, можно воспользоваться следующей методикой.

    Самый простой способ доказать теорему Пифагора. Отзывы

    Как полагают историки, этот способ был впервые использован для доказательства теоремы еще в древней Греции. Он является самым простым, так как не требует абсолютно никаких расчетов. Если правильно начертить рисунок, то доказательство утверждения, что а 2 +в 2 =с 2 , будет видно наглядно.

    Условия для данного способа будет немного отличаться от предыдущего. Чтобы доказать теорему, предположим, что прямоугольный треугольник АВС - равнобедренный.

    Гипотенузу АС принимаем за сторону квадрата и дочерчиваем три его стороны. Кроме этого необходимо провести две диагональные прямые в получившемся квадрате. Таким образом, чтобы внутри него получилось четыре равнобедренных треугольника.

    К катетам АВ и СВ так же нужно дочертить по квадрату и провести по одной диагональной прямой в каждом из них. Первую прямую чертим из вершины А, вторую - из С.

    Теперь нужно внимательно всмотреться в получившийся рисунок. Поскольку на гипотенузе АС лежит четыре треугольника, равные исходному, а на катетах по два, это говорит о правдивости данной теоремы.

    Кстати, благодаря данной методике доказательства теоремы Пифагора и появилась на свет знаменитая фраза: «Пифагоровы штаны во все стороны равны».

    Доказательство Дж. Гарфилда

    Джеймс Гарфилд - двадцатый президент Соединенных Штатов Америки. Кроме того, что он оставил свой след в истории как правитель США, он был еще и одаренным самоучкой.

    В начале своей карьеры он был обычным преподавателем в народной школе, но вскоре стал директором одного из высших учебных заведений. Стремление к саморазвитию и позволило ему предложить новую теорию доказательства теоремы Пифагора. Теорема и пример ее решения выглядит следующим образом.

    Сначала нужно начертить на листе бумаги два прямоугольных треугольника таким образом, чтобы катет одного из них был продолжением второго. Вершины этих треугольников нужно соединить, чтобы в конечном итоге получилась трапеция.

    Как известно, площадь трапеции равна произведению полусуммы ее оснований на высоту.

    S=а+в/2 * (а+в)

    Если рассмотреть получившуюся трапецию, как фигуру, состоящую из трех треугольников, то ее площадь можно найти так:

    S=ав/2 *2 + с 2 /2

    Теперь необходимо уравнять два исходных выражения

    2ав/2 + с/2=(а+в) 2 /2

    с 2 =а 2 +в 2

    О теореме Пифагора и способах ее доказательства можно написать не один том учебного пособия. Но есть ли в нем смысл, когда эти знания нельзя применить на практике?

    Практическое применение теоремы Пифагора

    К сожалению, в современных школьных программах предусмотрено использование данной теоремы только в геометрических задачах. Выпускники скоро покинут школьные стены, так и не узнав, а как они могут применить свои знания и умения на практике.

    На самом же деле использовать теорему Пифагора в своей повседневной жизни может каждый. Причем не только в профессиональной деятельности, но и в обычных домашних делах. Рассмотрим несколько случаев, когда теорема Пифагора и способы ее доказательства могут оказаться крайне необходимыми.

    Связь теоремы и астрономии

    Казалось бы, как могут быть связаны звезды и треугольники на бумаге. На самом же деле астрономия - это научная сфера, в которой широко используется теорема Пифагора.

    Например, рассмотрим движение светового луча в космосе. Известно, что свет движется в обе стороны с одинаковой скоростью. Траекторию АВ, которой движется луч света назовем l . А половину времени, которое необходимо свету, чтобы попасть из точки А в точку Б, назовем t . И скорость луча - c . Получается, что: c*t=l

    Если посмотреть на этот самый луч из другой плоскости, например, из космического лайнера, который движется со скоростью v, то при таком наблюдении тел их скорость изменится. При этом даже неподвижные элементы станут двигаться со скоростью v в обратном направлении.

    Допустим, комический лайнер плывет вправо. Тогда точки А и В, между которыми мечется луч, станут двигаться влево. Причем, когда луч движется от точки А в точку В, точка А успевает переместиться и, соответственно, свет уже прибудет в новую точку С. Чтобы найти половину расстояния, на которое сместилась точка А, нужно скорость лайнера умножить на половину времени путешествия луча (t").

    А чтобы найти, какое расстояние за это время смог пройти луч света, нужно обозначить половину пути новой буковой s и получить следующее выражение:

    Если представить, что точки света С и В, а также космический лайнер - это вершины равнобедренного треугольника, то отрезок от точки А до лайнера разделит его на два прямоугольных треугольника. Поэтому благодаря теореме Пифагора можно найти расстояние, которое смог пройти луч света.

    Этот пример, конечно, не самый удачный, так как только единицам может посчастливиться опробовать его на практике. Поэтому рассмотрим более приземленные варианты применения этой теоремы.

    Радиус передачи мобильного сигнала

    Современную жизнь уже невозможно представить без существования смартфонов. Но много ли было бы от них прока, если бы они не могли соединять абонентов посредством мобильной связи?!

    Качество мобильной связи напрямую зависит от того, на какой высоте находиться антенна мобильного оператора. Для того чтобы вычислить, каком расстоянии от мобильной вышки телефон может принимать сигнал, можно применить теорему Пифагора.

    Допустим, нужно найти приблизительную высоту стационарной вышки, чтобы она могла распространять сигнал в радиусе 200 километров.

    АВ (высота вышки) = х;

    ВС (радиус передачи сигнала) = 200 км;

    ОС (радиус земного шара) = 6380 км;

    ОВ=ОА+АВОВ=r+х

    Применив теорему Пифагора, выясним, что минимальная высота вышки должна составить 2,3 километра.

    Теорема Пифагора в быту

    Как ни странно, теорема Пифагора может оказаться полезной даже в бытовых делах, таких как определение высоты шкафа-купе, например. На первый взгляд, нет необходимости использовать такие сложные вычисления, ведь можно просто снять мерки с помощью рулетки. Но многие удивляются, почему в процессе сборки возникают определенные проблемы, если все мерки были сняты более чем точно.

    Дело в том, что шкаф-купе собирается в горизонтальном положении и только потом поднимается и устанавливается к стене. Поэтому боковина шкафа в процессе подъема конструкции должна свободно проходить и по высоте, и по диагонали помещения.

    Предположим, имеется шкаф-купе глубиной 800 мм. Расстояние от пола до потолка - 2600 мм. Опытный мебельщик скажет, что высота шкафа должна быть на 126 мм меньше, чем высота помещения. Но почему именно на 126 мм? Рассмотрим на примере.

    При идеальных габаритах шкафа проверим действие теоремы Пифагора:

    АС=√АВ 2 +√ВС 2

    АС=√2474 2 +800 2 =2600 мм - все сходится.

    Допустим, высота шкафа равна не 2474 мм, а 2505 мм. Тогда:

    АС=√2505 2 +√800 2 =2629 мм.

    Следовательно, этот шкаф не подойдет для установки в данном помещении. Так как при поднятии его в вертикальное положение можно нанести ущерб его корпусу.

    Пожалуй, рассмотрев разные способы доказательства теоремы Пифагора разными учеными, можно сделать вывод, что она более чем правдива. Теперь можно использовать полученную информацию в своей повседневной жизни и быть полностью уверенным, что все расчеты будут не только полезны, но и верны.

    Теорема Пифагора — одна из основополагающих теорем евклидовой геометрии, устанавливающая соотношение

    между сторонами прямоугольного треугольника .

    Считается, что доказана греческим математиком Пифагором, в честь которого и названа.

    Геометрическая формулировка теоремы Пифагора.

    Изначально теорема была сформулирована следующим образом:

    В прямоугольном треугольнике площадь квадрата , построенного на гипотенузе , равна сумме площадей квадратов ,

    построенных на катетах.

    Алгебраическая формулировка теоремы Пифагора.

    В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

    То есть, обозначив длину гипотенузы треугольника через c , а длины катетов через a и b :

    Обе формулировки теоремы Пифагора эквивалентны, но вторая формулировка более элементарна, она не

    требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и

    измерив только длины сторон прямоугольного треугольника .

    Обратная теорема Пифагора.

    Если квадрат одной стороны треугольника равен сумме квадратов двух других сторон, то

    треугольник прямоугольный.

    Или, иными словами:

    Для всякой тройки положительных чисел a , b и c , такой, что

    существует прямоугольный треугольник с катетами a и b и гипотенузой c .

    Теорема Пифагора для равнобедренного треугольника.

    Теорема Пифагора для равностороннего треугольника.

    Доказательства теоремы Пифагора.

    На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема

    Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие

    можно объяснить лишь фундаментальным значением теоремы для геометрии.

    Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них:

    доказательства методом площадей , аксиоматические и экзотические доказательства (например,

    с помощью дифференциальных уравнений ).

    1. Доказательство теоремы Пифагора через подобные треугольники.

    Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся

    напрямую из аксиом. В частности, оно не использует понятие площади фигуры.

    Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим

    её основание через H .

    Треугольник ACH подобен треугольнику AB C по двум углам. Аналогично, треугольник CBH подобен ABC .

    Введя обозначения:

    получаем:

    ,

    что соответствует -

    Сложив a 2 и b 2 , получаем:

    или , что и требовалось доказать.

    2. Доказательство теоремы Пифагора методом площадей.

    Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они

    используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.

    • Доказательство через равнодополняемость.

    Расположим четыре равных прямоугольных

    треугольника так, как показано на рисунке

    справа.

    Четырёхугольник со сторонами c - квадратом,

    так как сумма двух острых углов 90°, а

    развёрнутый угол — 180°.

    Площадь всей фигуры равна, с одной стороны,

    площади квадрата со стороной (a+b ), а с другой стороны, сумме площадей четырёх треугольников и

    Что и требовалось доказать.

    3. Доказательство теоремы Пифагора методом бесконечно малых.


    Рассматривая чертёж, показанный на рисунке, и

    наблюдая изменение стороны a , мы можем

    записать следующее соотношение для бесконечно

    малых приращений сторон с и a (используя подобие

    треугольников):

    Используя метод разделения переменных, находим:

    Более общее выражение для изменения гипотенузы в случае приращений обоих катетов:

    Интегрируя данное уравнение и используя начальные условия, получаем:

    Таким образом, мы приходим к желаемому ответу:

    Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной

    пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми

    вкладами от приращения разных катетов.

    Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения

    (в данном случае катет b ). Тогда для константы интегрирования получим:

    О теореме Пифагора и способах ее доказательства

    Г. Глейзер,
    академик РАО, Москва

    О теореме Пифагора и способах ее доказательства

    Статья опубликована при поддержке компании «Мастер перевода». Хотите качественный и быстрый перевод? Обратитесь в бюро нотариальных переводов «Мастер перевода». Качество услуг гарантировано постоянными клиентами бюро, среди которых множество именитых российских компаний. Посетите официальный сайт компании www.masterperevoda.ru и ознакомьтесь подробнее с предоставляемыми им услугами.

    Площадь квадрата, построенного на гипотенузе прямоугольного треугольника, равна сумме площадей квадратов, построенных на его катетах...

    Это одна из самых известных геометрических теорем древности, называемая теоремой Пифагора. Ее и сейчас знают практически все, кто когда-либо изучал планиметрию. Мне кажется, что если мы хотим дать знать внеземным цивилизациям о существовании разумной жизни на Земле, то следует посылать в космос изображение Пифагоровой фигуры. Думаю, что если эту информацию смогут принять мыслящие существа, то они без сложной дешифровки сигнала поймут, что на Земле существует достаточно развитая цивилизация.

    Знаменитый греческий философ и математик Пифагор Самосский, именем которого названа теорема, жил около 2,5 тысяч лет тому назад. Дошедшие до нас биографические сведения о Пифагоре отрывочны и далеко не достоверны. С его именем связано много легенд. Достоверно известно, что Пифагор много путешествовал по странам Востока, посещал Египет и Вавилон. В одной из греческих колоний Южной Италии им была основана знаменитая «Пифагорова школа», сыгравшая важную роль в научной и политической жизни древней Греции. Именно Пифагору приписывают доказательство известной геометрической теоремы. На основе преданий, распространенных известными математиками (Прокл, Плутарх и др.), длительное время считали, что до Пифагора эта теорема не была известна, отсюда и название – теорема Пифагора.

    Не подлежит, однако, сомнению, что эту теорему знали за много лет до Пифагора. Так, за 1500 лет до Пифагора древние египтяне знали о том, что треугольник со сторонами 3, 4 и 5 является прямоугольным, и пользовались этим свойством (т. е. теоремой, обратной теореме Пифагора) для построения прямых углов при планировке земельных участков и сооружений зданий. Да и поныне сельские строители и плотники, закладывая фундамент избы, изготовляя ее детали, вычерчивают этот треугольник, чтобы получить прямой угол. Это же самое проделывалось тысячи лет назад при строительстве великолепных храмов в Египте, Вавилоне, Китае, вероятно, и в Мексике. В самом древнем дошедшем до нас китайском математико-астрономическом сочинении «Чжоу-би», написанном примерно за 600 лет до Пифагора, среди других предложений, относящихся к прямоугольному треугольнику, содержится и теорема Пифагора. Еще раньше эта теорема была известна индусам. Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Мы не знаем, как он это сделал. Некоторыми историками математики предполагается, что все же доказательство Пифагора было не принципиальным, а лишь подтверждением, проверкой этого свойства на ряде частных видов треугольников, начиная с равнобедренного прямоугольного треугольника, для которого оно очевидно следует из рис. 1.

    С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Таких доказательств – более или менее строгих, более или менее наглядных – известно более полутора сотен, но стремление к преумножению их числа сохранилось. Думаю, что самостоятельное «открытие» доказательств теоремы Пифагора будет полезно и современным школьникам.

    Рассмотрим некоторые примеры доказательств, которые могут подсказать направления таких поисков.

    Доказательства, основанные на использовании понятия равновеликости фигур.

    При этом можно рассмотреть доказательства, в которых квадрат, построенный на гипотенузе данного прямоугольного треугольника «складывается» из таких же фигур, что и квадраты, построенные на катетах. Можно рассматривать и такие доказательства, в которых применяется перестановка слагаемых фигур и учитывается ряд новых идей.

    • На рис. 2 изображено два равных квадрата. Длина сторон каждого квадрата равна a + b. Каждый из квадратов разбит на части, состоящие из квадратов и прямоугольных треугольников. Ясно, что если от площади квадрата отнять учетверенную площадь прямоугольного треугольника с катетами a, b, то останутся равные площади, т. е. c 2 = a 2 + b 2 . Впрочем, древние индусы, которым принадлежит это рассуждение, обычно не записывали его, а сопровождали чертеж лишь одним словом: «смотри!» Вполне возможно, что такое же доказательство предложил и Пифагор.

    Аддитивные доказательства.

    Эти доказательства основаны на разложении квадратов, построенных на катетах, на фигуры, из которых можно сложить квадрат, построенный на гипотенузе.

    Здесь: ABC – прямоугольный треугольник с прямым углом C; C О MN; CK ^ MN; PO||MN; EF||MN.

    Самостоятельно докажите попарное равенство треугольников, полученных при разбиении квадратов, построенных на катетах и гипотенузе.

    • На рис. 4 приведено доказательство теоремы Пифагора с помощью разбиения ан-Найризия – средневекового багдадского комментатора «Начал» Евклида. В этом разбиении квадрат, построенный на гипотенузе, разбит на 3 треугольника и 2 четырехугольника. Здесь: ABC – прямоугольный треугольник с прямым углом C; DE = BF.

    Докажите теорему с помощью этого разбиения.

    • На основе доказательства ан-Найризия выполнено и другое разложение квадратов на попарно равные фигуры (рис. 5, здесь ABC – прямоугольный треугольник с прямым углом C).
    • Еще одно доказательство методом разложения квадратов на равные части, называемое «колесом с лопастями», приведено на рис. 6. Здесь: ABC– прямоугольный треугольник с прямым углом C; O – центр квадрата, построенного на большом катете; пунктирные прямые, проходящие через точку O, перпендикулярны или параллельны гипотенузе.
    • Это разложение квадратов интересно тем, что его попарно равные четырехугольники могут быть отображены друг на друга параллельным переносом. Может быть предложено много и других доказательств теоремы Пифагора с помощью разложения квадратов на фигуры.

    Доказательства методом достроения.

    Сущность этого метода состоит в том, что к квадратам, построенным на катетах, и к квадрату, построенному на гипотенузе, присоединяют равные фигуры таким образом, чтобы получились равновеликие фигуры.

    Справедливость теоремы Пифагора вытекает из равновеликости шестиугольников AEDFPB и ACBNMQ. Здесь C О EP, прямая EP делит шестиугольник AEDFPB на два равновеликих четырехугольника, прямая CM делит шестиугольник ACBNMQ на два равновеликих четырехугольника; поворот плоскости на 90° вокруг центра A отображает четырехугольник AEPB на четырехугольник ACMQ.

    Теперь докажем, что фигуры, вычитаемые в первом случае, равновелики фигурам, вычитаемым во втором случае.

    KLOA = ACPF = ACED = a 2 ;

    LGBO = CBMP = CBNQ = b 2 ;

    AKGB = AKLO + LGBO = c 2 ;

    отсюда c 2 = a 2 + b 2 .

    OCLP = ACLF = ACED = b 2 ;

    CBML = CBNQ = a 2 ;

    OBMP = ABMF = c 2 ;

    OBMP = OCLP + CBML;

    отсюда

    c 2 = a 2 + b 2 .

    • Рис. 11 иллюстрирует еще одно более оригинальное доказательство, предложенное Гофманом.
      Здесь: треугольник ABC с прямым углом C; отрезок BF перпендикулярен CB и равен ему, отрезок BE перпендикулярен AB и равен ему, отрезок AD перпендикулярен AC и равен ему; точки F, C, D принадлежат одной прямой; четырехугольники ADFB и ACBE равновелики, так как ABF=ECB; треугольники ADF и ACE равновелики; отнимем от обоих равновеликих четырехугольников общий для них треугольник ABC, получим

    Алгебраический метод доказательства.

    На рис. 13 ABC – прямоугольный, C – прямой угол, CM ^ AB, b 1 – проекция катета b на гипотенузу, a 1 – проекция катета a на гипотенузу, h – высота треугольника, проведенная к гипотенузе.

    Из того, что D ABC подобен D ACM следует

    b 2 = cb 1 ; (1)

    из того, что D ABC подобен D BCM следует

    a 2 = ca 1 . (2)

    Складывая почленно равенства (1) и (2), получим a 2 + b 2 = cb 1 + ca 1 = c(b 1 + a 1) = c 2 .

    Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные историки математики обычно приписывают Евклиду.

    откуда следует, что c 2 =a 2 +b 2 .

    во втором

    Приравнивая эти выражения, получаем теорему Пифагора.

    • Существует много доказательств теоремы Пифагора, проведенных как каждым из описанных методов, так и с помощью сочетания различных методов. Завершая обзор примеров различных доказательств, приведем еще рисунки, иллюстрирующие восемь способов, на которые имеются ссылки в «Началах» Евклида (рис. 16 – 23). На этих рисунках Пифагорова фигура изображена сплошной линией, а дополнительные построения – пунктирной.

    1. Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959.
    2. Глейзер Г.И. История математики в школе. М., 1982.
    3. Еленьский Щ. По следам Пифагора. М., 1961.
    4. Литцман В. Теорема Пифагора. М., 1960.
    5. Скопец З.А. Геометрические миниатюры. М., 1990.

    Поддержите проект — поделитесь ссылкой, спасибо!
    Читайте также
    Скрытый сифилис: симптомы, диагностика и лечение всех форм Ранний и поздний скрытый сифилис Скрытый сифилис: симптомы, диагностика и лечение всех форм Ранний и поздний скрытый сифилис Фетучини с белыми грибами в сливочном соусе – пошаговый рецепт с фото, как приготовить пасту Как приготовить фетучини с грибным соусом рецепт Фетучини с белыми грибами в сливочном соусе – пошаговый рецепт с фото, как приготовить пасту Как приготовить фетучини с грибным соусом рецепт Как приготовить суп харчо в домашних условиях Как приготовить суп харчо в домашних условиях