Устройство и принцип действия ракеты. Многоступенчатая ракета: Министерство обороны Российской Федерации Какие бывают многоступенчатые ракеты

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?


2. Принцип действия многоступенчатой ракеты

Ракета является весьма «затратным» транспортным средством. Ракеты-носители космических аппаратов «транспортируют», главным образом, топливо, необходимое для работы их двигателей и собственную конструкцию, состоящую в основном из топливных контейнеров и двигательной установки. На долю полезной нагрузки приходится лишь малая часть стартовой массы ракеты.

Составная ракета позволяет более рационально использовать ресурсы за счёт того, что в полёте ступень, выработавшая своё топливо, отделяется, и остальное топливо ракеты не тратится на ускорение конструкции отработавшей ступени, ставшей ненужной для продолжения полёта. Пример расчёта, подтверждающего эти соображения, приводится в статье Формула Циолковского.

Варианты компоновки ракет. Слева направо:
1. одноступенчатая ракета;
2. двухступенчатая ракета с поперечным разделением;
3. двухступенчатая ракета с продольным разделением.
4. Ракета с внешними топливными ёмкостями, отделяемыми после исчерпания топлива в них.

Трёхступенчатая ракета с поперечным разделением Сатурн-5 без переходников

Конструктивно многоступенчатые ракеты выполняются c поперечным или продольным разделением ступеней.
При поперечном разделении ступени размещаются одна над другой и работают последовательно друг за другом, включаясь только после отделения предыдущей ступени. Такая схема даёт возможность создавать системы, в принципе, с любым количеством ступеней. Недостаток её заключается в том, что ресурсы последующих ступеней не могут быть использованы при работе предыдущей, являясь для неё пассивным грузом.

Трёхступенчатая ракета-носитель с продольно-поперечным разделением Союз-2.

При продольном разделении первая ступень состоит из нескольких одинаковых ракет, работающих одновременно и располагающихся вокруг корпуса второй ступени симметрично, чтобы равнодействующая сил тяги двигателей первой ступени была направлена по оси симметрии второй. Такая схема позволяет работать двигателю второй ступени одновременно с двигателями первой, увеличивая, таким образом, суммарную тягу, что особенно нужно во время работы первой ступени, когда масса ракеты максимальна. Но ракета с продольным разделением ступеней может быть только двухступенчатой.
Существует и комбинированная схема разделения - продольно-поперечная, позволяющая совместить преимущества обеих схем, при которой первая ступень разделяется со второй продольно, а разделение всех последующих ступеней происходит поперечно. Пример такого подхода - отечественный носитель Союз.

Компоновка Спейс Шаттла.
Первая ступень - боковые твёрдотопливные ускорители.
Вторая ступень - орбитер с отделяемым внешним топливным баком. При старте запускаются двигатели обеих ступеней.

Старт Спейс Шаттла.

Уникальную схему двухступенчатой ракеты с продольным разделением имеет космический корабль Спейс Шаттл, первая ступень которого состоит из двух боковых твёрдотопливных ускорителей, а на второй ступени часть топлива содержится в баках орбитера, а большая часть - в отделяемом внешнем топливном баке. Сначала двигательная установка орбитера расходует топливо из внешнего бака, а когда оно будет исчерпано, внешний бак сбрасывается и двигатели продолжают работу на том топливе, которое содержится в баках орбитера. Такая схема позволяет максимально использовать двигательную установку орбитера, которая работает на всём протяжении вывода корабля на орбиту.

При поперечном разделении ступени соединяются между собой специальными секциями - переходниками - несущими конструкциями цилиндрической или конической формы, каждый из которых должен выдерживать суммарный вес всех последующих ступеней, помноженный на максимальное значение перегрузки, испытываемой ракетой на всех участках полёта, на которых данный переходник входит в состав ракеты.
При продольном разделении на корпусе второй ступени создаются силовые бандажи, к которым крепятся блоки первой ступени.
Элементы, соединяющие части составной ракеты, сообщают ей жёсткость цельного корпуса, а при разделении ступеней должны практически мгновенно освобождать верхнюю ступень. Обычно соединение ступеней выполняется с помощью пироболтов. Пироболт - это крепёжный болт, в стержне которого рядом с головкой создается полость, заполняемая бризантным взрывчатым веществом с электродетонатором. При подаче импульса тока на электродетонатор происходит взрыв, разрушающий стержень болта, в результате чего его головка отрывается. Количество взрывчатки в пироболте тщательно дозируется, чтобы, с одной стороны, гарантировать отрыв головки, а, с другой - не повредить ракету. При разделении ступеней на электродетонаторы всех пироболтов, соединяющих разделяемые части, одновременно подаётся импульс тока, и соединение освобождается.
Далее ступени должны быть разведены на безопасное расстояние друг от друга. При разделении ступеней в атмосфере для их разведения может быть использована аэродинамическая сила встречного потока воздуха, а при разделении в пустоте иногда используются вспомогательные небольшие твёрдотопливные ракетные двигатели.
На жидкостных ракетах эти же двигатели служат и для того, чтобы «осадить» топливо в баках верхней ступени: при выключении двигателя низшей ступени ракета летит по инерции, в состоянии свободного падения, при этом жидкое топливо в баках находится во взвешенном состоянии, что может привести к сбою при запуске двигателя. Вспомогательные двигатели сообщают ступени небольшое ускорение, под действием которого топливо «оседает» на днища баков.
На приведённом выше снимке ракеты Сатурн-5, на корпусе третьей ступени виден чёрный корпус одного из вспомогательных твёрдотопливных двигателей разведения 3-й и 2-й ступеней.

Увеличение числа ступеней даёт положительный эффект только до определённого предела. Чем больше ступеней - тем больше суммарная масса переходников, а также двигателей, работающих лишь на одном участке полёта, и, в какой-то момент, дальнейшее увеличение числа ступеней становится контрпродуктивным. В современной практике ракетостроения более четырёх ступеней, как правило, не делается.

При выборе числа ступеней важное значение имеют также вопросы надёжности. Пироболты и вспомогательные РДТТ - элементы одноразового действия, проверить функционирование которых до старта ракеты невозможно. Между тем, отказ только одного пироболта может привести к аварийному завершению полёта ракеты. Увеличение числа одноразовых элементов, не подлежащих проверке функционирования, снижает надёжность всей ракеты в целом. Это также заставляет конструкторов воздерживаться от слишком большого количества ступеней.

Миномётный старт Транспортно-пусковой контейнер >>>

АПУСК произведен с помощью многоступенчатой ракеты», - эти слова уже много раз читали мы в сообщениях о запуске первых в мире искусственных спутников Земли, о создании спутника Солнца, о запуске космических ракет к Луне. Всего одна короткая фраза, а сколько вдохновенного труда ученых, инженеров и рабочих нашей Родины скрывается за этими шестью словами!

Что же представляют собой современные многоступенчатые ракеты? Почему возникла необходимость применять для космических полетов ракеты, состоящие из большого количества ступеней? Какой технический эффект дает увеличение числа ступеней ракеты?

Попробуем кратко ответить на эти вопросы. Для осуществления полетов в космос требуются громадные запасы топлива. Они столь велики, что их невозможно поместить в баках одноступенчатой ракеты. При современном уровне инженерной науки можно построить ракету, в которой на долю топлива приходилось бы до 80- 90% ее общего веса. А для полетов на другие планеты потребные запасы топлива должны в сотни и даже в тысячи раз превосходить собственный вес ракеты и находящегося в ней полезного груза. При тех запасах топлива, которые удается поместить в баках одноступенчатой ракеты, можно достигнуть скорости полета до 3-4 км/сек. Усовершенствование ракетных двигателей, изыскание наивыгоднейших сортов топлива, применение более качественных конструкционных материалов и дальнейшее усовершенствование конструкции ракет, безусловно, позволят несколько увеличить скорость одноступенчатых ракет. Но до космических скоростей все-таки будет еще очень далеко.

Чтобы достигнуть космических скоростей, К. Э. Циолковский предложил применять многоступенчатые ракеты. Сам ученый образно назвал их «ракетными поездами». По мысли Циолковского ракетный поезд, или, как мы говорим сейчас, многоступенчатая ракета, должен состоять из нескольких ракет, укрепленных одна на другой. Нижняя ракета обычно является самой большой. Она несет на себе весь «поезд». Последующие ступени делаются все меньших и меньших размеров.

При взлете с поверхности Земли работают двигатели нижней ракеты. Они действуют до тех пор, пока не израсходуют все топливо, находящееся в ее баках. Когда баки первой ступени окажутся пустыми, она отделяется от верхних ракет, чтобы не обременять мертвым грузом их дальнейший полет. Отделившаяся первая ступень с пустыми баками некоторое время по инерции продолжает полет вверх, а затем падает на землю. Для сохранения первой ступени ради повторного использования можно обеспечить ее спуск на парашюте.

После отделения первой ступени включаются в работу двигатели второй ступени. Они начинают действовать тогда, когда ракета уже поднялась на некоторую высоту и имеет значительную скорость полета. Двигатели второй ступени разгоняют ракету дальше, увеличивая ее скорость еще на несколько километров в секунду. После израсходования всего топлива, содержащегося в баках второй ступени, сбрасывается и она. Дальнейший полет составной ракеты обеспечивает работа двигателей третьей ступени. Потом сбрасывается и третья ступень. Очередь подходит к двигателям четвертой ступени. Выполнив возложенную на них работу, они повышают скорость ракеты еще на некоторую величину, а затем уступают место двигателям пятой ступени. После сброса пятой ступени начинают работать двигатели шестой.

Так, каждая ступень ракеты последовательно увеличивает скорость полета, а последняя, верхняя ступень достигает в безвоздушном пространстве необходимой космической скорости. Если ставится задача осуществить посадку на другую планету и возвратиться обратно на Землю, то вылетевшая в космос ракета, в свою очередь, должна состоять из нескольких ступеней, последовательно включаемых при спуске на планету и при взлете с нее.

Интересно посмотреть, какой эффект дает применение на ракетах большого количества ступеней.

Возьмем одноступенчатую ракету со стартовым весом 500 т. Предположим, что этот вес распределяется следующим образом: полезный груз - 1 т, сухой вес ступени - 99,8 т и топливо - 399,2 т. Следовательно, конструктивное совершенство этой ракеты таково, что вес топлива в 4 раза превосходит сухой вес ступени, то есть вес самой ракеты без топлива и полезного груза. Число Циолковского, то есть отношение стартового веса ракеты к ее весу после израсходования всего топлива, для данной ракеты будет равно 4,96. Это число и величина скорости истечения газа из сопла двигателя определяют скорость, которую может достигнуть ракета. Попробуем теперь заменить одноступенчатую ракету двухступенчатой. Снова возьмем полезный груз в 1 т и будем считать, что конструктивное совершенство ступеней и скорость истечения газа останутся такими же, как и в одноступенчатой ракете. Тогда, как показывают расчеты, для достижения такой же скорости полета, как и в первом случае, потребуется двухступенчатая ракета с полным весом всего в 10,32 т, то есть почти в 50 раз легче, чем одноступенчатая. Сухой вес двухступенчатой ракеты составит 1,86 т, а вес топлива, помещенного в обеих ступенях, - 7,46 т. Как видим, в рассматриваемом примере замена одноступенчатой ракеты двухступенчатой позволяет в 54 раза сократить расход металла и топлива при осуществлении запуска одинакового полезного груза.

Возьмем для примера космическую ракету с полезным грузом в 1 т. Пусть эта ракета должна пробить плотные слои атмосферы и, вылетев в безвоздушное пространство, развить вторую космическую скорость - 11,2 км/сек. На наших диаграммах показано изменение веса такой космической ракеты в зависимости от весовой доли топлива в каждой ступени и от числа ступеней (см. стр. 22).

Нетрудно подсчитать, что если построить ракету, двигатели которой отбрасывают газы со скоростью 2 400 м/сек и в каждой из ступеней на долю топлива приходится лишь 75% веса, то даже при устройстве шести ступеней взлетный вес ракеты окажется очень большим - почти 5,5 тыс. т. Улучшая конструктивную характеристику ступеней ракеты, можно добиться существенного снижения стартового веса. Так, например, если на долю топлива приходится 90% веса ступени, то шестиступенчатая ракета может весить 400 т.

Исключительно большой эффект дает использование в ракетах высококалорийного топлива и повышение эффективности их двигателей. Если этим путем увеличить скорость истечения газа из сопла двигателя всего на 300 м/сек, доведя ее до величины, указанной на графике, - 2 700 м/сек, то стартовый вес ракеты можно будет сократить в несколько раз. Шестиступенчатая ракета, в которой вес топлива лишь в 3 раза превышает вес конструкции ступени, будет иметь стартовый вес примерно 1,5 тыс. т. А уменьшив вес конструкции до 10% от полного веса каждой ступени, мы можем снизить стартовый вес ракеты с тем же числом ступеней до 200 т.

Если увеличить скорость истечения газа еще на 300 м/сек, то есть принять ее равной 3 тыс. м/сек, то произойдет еще большее сокращение веса. Например, шестиступенчатая ракета при весовой доле топлива, равной 75%, будет иметь стартовый вес 600 т. Повысив весовую долю топлива до 90%, можно создать космическую ракету всего с двумя ступенями. Вес ее окажется около 850 т. Увеличив в 2 раза число ступеней, можно сократить вес ракеты до 140 т. А при шести ступенях взлетный вес снизится до 116 т.

Вот как влияет число ступеней, их конструктивное совершенство и скорость истечения газа на вес ракеты.

Почему же с ростом числа ступеней уменьшаются потребные запасы топлива, а вместе с ними и полный вес ракеты? Это происходит оттого, что, чем больше число ступеней, тем чаще будут отбрасываться пустые баки, ракета будет быстрее освобождаться от бесполезного груза. При этом с ростом числа ступеней сначала взлетный вес ракеты уменьшается очень сильно, а затем эффект от увеличения числа ступеней становится менее значительным. Можно также отметить, как это хорошо видно на приведенных графиках, что для ракет с относительно плохой конструктивной характеристикой увеличение числа ступеней дает больший эффект, чем для ракет с высоким процентным содержанием топлива в каждой ступени. Это вполне понятно. Если корпуса каждой ступени очень тяжелые, то их надо как можно быстрее сбрасывать. А если корпус имеет очень малый вес, то он не слишком обременяет ракеты и частые сбросы пустых корпусов уже не дают такого большого эффекта.


При полете ракет на другие планеты потребный расход топлива не ограничивается тем количеством, которое необходимо для разгона при взлете с Земли. Подлетая к другой планете, космический корабль попадает в сферу ее притяжения и начинает приближаться к ее поверхности с увеличивающейся скоростью. Если планета лишена атмосферы, способной погасить хотя бы часть скорости, то ракета при падении на поверхность планеты разовьет такую же скорость, какая необходима для отлета с этой планеты, то есть вторую космическую скорость. Величина второй космической скорости, как известно, различна для каждой планеты. Например, для Марса она равна 5,1 км/сек, для Венеры - 10,4 км/сек, для Луны - 2,4 км/сек. В том случае, когда ракета подлетит к сфере притяжения планеты, обладая некоторой скоростью относительно последней, скорость падения ракеты окажется еще большей. Например, вторая советская космическая ракета достигла поверхности Луны со скоростью 3,3 км/сек. Если ставится задача обеспечить плавную посадку ракеты на поверхность Луны, то на борту ракеты надо иметь дополнительные запасы топлива. Чтобы погасить какую-либо скорость, требуется израсходовать столько же топлива, сколько необходимо для того, чтобы ракета развила такую же скорость. Следовательно, космическая ракета, предназначенная для безопасной доставки на лунную поверхность какого-нибудь груза, должна нести значительные запасы топлива. Одноступенчатая ракета с полезным грузом в 1 т должна иметь вес 3-4,5 т в зависимости от ее конструктивного совершенства.

Раньше мы показали, какой громадный вес должны иметь ракеты, чтобы унести в космическое пространство груз в 1 т. А теперь видим, что из этого груза только третья или даже четвертая доля может быть безопасно опущена на поверхность Луны. Остальное должно приходиться на топливо, баки для его хранения, двигатель и систему управления.

Какой же в итоге должен быть стартовый вес космической ракеты, предназначенной для безопасной доставки на поверхность Луны научной аппаратуры или иного полезного груза весом в 1 т?

Для того чтобы дать представление о кораблях такого типа, на нашем рисунке условно изображена в разрезе пятиступенчатая ракета, предназначенная для доставки на поверхность Луны контейнера с научной аппаратурой весом в 1 т. В основу расчета этой ракеты были положены технические данные, приводимые в большом количестве книг (например, в книгах В. Феодосьева и Г. Синярева «Введение в ракетную технику» и Саттона «Ракетные двигатели»).

Были взяты ракетные двигатели, работающие на жидком топливе. Для подачи топлива в камеры сгорания предусмотрены турбонасосные агрегаты, приводимые в действие продуктами разложения перекиси водорода. Средняя скорость истечения газа для двигателей первой ступени принята равной 2 400 м/сек. Двигатели верхних ступеней работают в сильно разреженных слоях атмосферы и в безвоздушном пространстве, поэтому их эффективность оказывается несколько большей и для них скорость истечения газа принята равной 2 700 м/сек. Для конструктивных характеристик ступеней были приняты такие значения, которые встречаются в ракетах, описанных в технической литературе.

При выбранных исходных данных получились следующие весовые характеристики космической ракеты: взлетный вес- 3 348 т, в том числе 2 892 т - топливо, 455 т - конструкция и 1 т - полезный груз. Вес по отдельным ступеням распределился так: первая ступень - 2 760 т, вторая - 495 т, третья - 75,5 т, четвертая - 13,78 т, пятая - 2,72 т. Высота ракеты достигла 60 м, диаметр нижней ступени - 10 м.

На первой ступени поставлено 19 двигателей с тягой по 350 т каждый. На второй - 3 таких же двигателя, на третьей - 3 двигателя с тягой по 60 т. На четвертой - один с тягой 35 т и на последней ступени - двигатель с тягой 10 т.

При взлете с поверхности Земли двигатели первой ступени разгоняют ракету до скорости 2 км/сек. После сброса пустого корпуса первой ступени включаются двигатели следующих трех ступеней, и ракета приобретает вторую космическую скорость.

Далее ракета по инерции летит к Луне. Приблизившись к ее поверхности, ракета поворачивается соплом вниз. Включается двигатель пятой ступени. Он гасит скорость падения, и ракета плавно опускается на лунную поверхность.

Приведенный рисунок и относящиеся к нему расчеты, конечно, не представляют собой реального проекта лунной ракеты. Они приведены лишь для того, чтобы дать первое представление о масштабах космических многоступенчатых ракет. Совершенно ясно, что конструкция ракеты, ее размеры и вес зависят от уровня развития науки и техники, от материалов, которыми располагают конструкторы, от применяемого топлива и качества ракетных двигателей, от мастерства ее строителей. Создание космических ракет представляет безграничные просторы для творчества ученых, инженеров, технологов. В этой области еще предстоит сделать много открытий и изобретений. И с каждым новым достижением будут меняться характеристики ракет.

Как современные воздушные корабли типа «ИЛ-18», «ТУ-104», «ТУ-114» не похожи на аэропланы, летавшие в начале этого века, так и космические ракеты будут непрерывно совершенствоваться. Со временем для полетов в космос в ракетных двигателях будет использоваться не только энергия химических реакций, но и другие источники энергии, например энергия ядерных процессов. С изменением типов ракетных двигателей изменится и конструкция самих ракет. Но замечательной идее К. Э. Циолковского о создании «ракетных поездов» всегда будет принадлежать почетная роль в исследовании бескрайных просторов космоса.

Если ракета разгоняется в течение достаточно длительного времени - так, чтобы космонавты не испытывали чрезмерных перегрузок, - вылетающий из сопла газ передает импульс не только оболочке, но и тому огромному запасу топлива, который ракета продолжает «нести с собой». Поскольку масса топлива намного больше массы оболочки, разгон ракеты происходит значительно медленнее, чем если бы все топливо было выброшено сразу. Расчеты показывают, что для того, чтобы ракета смогла достичь первой космической скорости и вывести на околоземную орбиту искусственный спутник, масса топлива должна в десятки раз превышать массу полезного груза. Чтобы уменьшить массу «разгоняемой» части ракеты, ракету делают многоступенчатой .

Первая и вторая ступени представляют собой емкости с топливом, камерами сгорания и соплами. Как только топливо, содержащееся в первой ступени, сгорает, эта ступень отделяется от ракеты, вследствие чего масса ракеты значительно уменьшается. Тут же включаются двигатели второй ступени и работают до тех пор, пока не закончится топливо, содержащееся во второй ступени. Наконец отбрасывается и эта ступень, и тогда включаются двигатели третьей ступени, завершающие разгон ракеты до расчетной скорости.

Механика. 2014


  • Иллюстрации по физике для 10 класса -> Динамика
  • Как связаны скорость ракеты и скорость выбрасываемого ракетой газа?
    Учебник по Физике для 10 класса -> Механика
  • От чего можно оттолкнуться, если вокруг ничего нет?
    Учебник по Физике для 10 класса -> Механика
  • Реактивное движение
    Учебник по Физике для 10 класса -> Механика
  • Из-за чего возникает сила трения качения?
    Учебник по Физике для 10 класса -> Механика
  • Реактивное движение
    Интересное о физике -> Энциклопедия по физике
  • Принцип действия ракеты
    Иллюстрации по физике для 10 класса ->
  • Решение к задаче 5. Вывод уравнения состояния для постоянной массы газа
    Учебник по Физике для 10 класса ->
  • От чего зависит суммарная энергия молекул газа?
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Вопросы к параграфу § 17. Реактивное движение. Освоение космоса
    Учебник по Физике для 10 класса -> Механика
  • Кто первым предложил использовать ракеты для полета в космос?
    Учебник по Физике для 10 класса -> Механика
  • Первые ракеты
    Учебник по Физике для 10 класса -> Механика
  • Принцип действия ракеты
    Учебник по Физике для 10 класса -> Механика
  • Из-за чего возникает сила трения скольжения?
    Учебник по Физике для 10 класса -> Механика
  • 1. Cопротивление и закон Ома для участка цепи
    Учебник по Физике для 11 класса -> Электродинамика
  • Закон сохранения импульса
    Интересное о физике -> Энциклопедия по физике
  • Ракета
    Интересное о физике -> Энциклопедия по физике
  • ЮНГ ТОМАС (1773-1829)
    Интересное о физике ->
  • ХОКИНГ СТИВЕН (РОДИЛСЯ В 1942)
    Интересное о физике -> Рассказы об ученых по физике
  • ФРАНКЛИН БЕНДЖАМИН (1706 - 1790)
    Интересное о физике -> Рассказы об ученых по физике
  • ФАРАДЕЙ МАЙКЛ (1791-1867)
    Интересное о физике -> Рассказы об ученых по физике
  • СКЛОДОВСКАЯ-КЮРИ МАРИЯ (1867-1934)
    Интересное о физике -> Рассказы об ученых по физике
  • КЮРИ ПЬЕР (1859-1906)
    Интересное о физике -> Рассказы об ученых по физике
  • КЕПЛЕР ИОГАНН (1571-1630)
    Интересное о физике -> Рассказы об ученых по физике
  • ЦИОЛКОВСКИЙ КОНСТАНТИН ЭДУАРДОВИЧ (1857–1935)
    Интересное о физике -> Рассказы об ученых по физике
  • Домашний опыт
    Иллюстрации по физике для 10 класса -> Термодинамика
  • Кипение воды при пониженном давлении
    Иллюстрации по физике для 10 класса -> Термодинамика

  • Иллюстрации по физике для 10 класса -> Термодинамика
  • Условия возникновения свободных колебаний
    Иллюстрации по физике для 10 класса ->
  • Пример колебаний: груз на нити
    Иллюстрации по физике для 10 класса -> Механические колебания и волны
  • Можно ли разогнать лодку без весел?
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Реактивное движение и освоение космоса
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Почему при ударе возникают большие силы?
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Отдача пушки
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Ю. А. Гагарин (1934 - 1968)
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • С. П. Королев (1907 - 1966)
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • К. Э. Циолковский (1857 - 1935)
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Кто первым предложил автомобиль с реактивным двигателем?
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Как устроена космическая ракета?
    Иллюстрации по физике для 10 класса -> Законы сохранения в механике
  • Прямолинейное движение
    Иллюстрации по физике для 10 класса -> Динамика
  • Взаимодействие футболиста с мячом
    Иллюстрации по физике для 10 класса -> Динамика
  • Поставим опыт к теме Насыщенный и ненасыщенный пар
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Насыщенный и ненасыщенный пар
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Поставим опыт к теме Парообразование: испарение и кипение
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Может ли вода кипеть при температуре, отличной от 100 °с?
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Примеры к теме Плавление и кристаллизация
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Как влияют тепловые двигатели на окружающую среду?
    Учебник по Физике для 10 класса -> Молекулярная физика и термодинамика
  • Главное в главе 3. Законы сохранения в механике
    Учебник по Физике для 10 класса -> Механика

Проект разработан по просьбе венчурного инвестора из ЕС.

Стоимость выведения на орбиту космических аппаратов пока очень велика. Это объясняется высокой стоимостью ракетных двигателей, дорогой системой управления, дорогими материалами, используемыми в напряженной конструкции ракет и их двигателей, сложной и, как правило, дорогостоящей технологией их изготовления, подготовки к пуску и, главным образом, их одноразовым использованием.

Доля стоимости носителя в общей стоимости запуска космического аппарата бывает разной. Если носитель серийный, а аппарат уникальный, то около 10%. Если наоборот - может достигать 40% и более. Это очень дорого, и поэтому возникла мысль, создать ракету-носитель, которая, подобно воздушному лайнеру, взлетала бы с космодрома, совершала полет на орбиту и, оставив там спутник или космический корабль, возвращалась на космодром.

Первой попыткой реализации такой идеи было создание системы «Спейс шаттл». На основании анализа недостатков одноразовых носителей и системы «Спейс шаттл», который сделан Константином Феоктистовым (К. Феоктистов. Траектория жизни. Москва: Вагриус, 2000. ISBN 5-264-00383-1. Глава 8. Ракета как самолет) , складывается представление о качествах, которыми должна обладать хорошая ракета-носитель, обеспечивающая доставку на орбиту полезного груза с минимальными затратами и с максимальной надежностью. Она должна быть системой многоразового использования, способной совершать 100–1000 полетов. Многоразовость нужна как для снижения затрат на каждый полет (расходы на разработку и изготовление распределяются на количество полетов), так и для повышения надежности выведения полезного груза на орбиту: каждая поездка на автомобиле и полет самолета подтверждают правильность его конструкции и качественное изготовление. Следовательно, можно снижать затраты на страхование полезного груза и страхование самой ракеты. По-настоящему надежными и недорогими в эксплуатации машинами могут быть только многоразовые - такие, как паровоз, автомобиль, самолет.

Ракета должна быть одноступенчатой. Это требование, как и многоразовость, связано и с минимизацией расходов, и с обеспечением надежности. Действительно, если ракета многоступенчатая, то даже если все ее ступени благополучно возвращаются на Землю, то перед каждым стартом их надо собирать в единое целое, а проверить правильность сборки и функционирования процессов разделения ступеней после сборки невозможно, так как при каждой проверке собранная машина должна рассыпаться. Не испытываемые, не проверяемые на функционирование после сборки, соединения становятся как бы одноразовыми. И пакет, соединенный узлами с пониженной надежностью, тоже становится в какой-то степени одноразовым. Если ракета многоступенчатая, то расходы на ее эксплуатацию больше, чем на эксплуатацию одноступенчатой машины по следующим причинам:

  • Для одноступенчатой машины не требуются расходы на сборку.
  • Не нужно выделять на поверхности Земли районы приземления для посадки первых ступеней, а следовательно, не нужно платить за их аренду, за то, что эти районы не используются в хозяйстве.
  • Нет необходимости платить за транспортировку первых ступеней к месту старта.
  • Заправка многоступенчатой ракеты требует более сложной технологии, большего времени. Сборка пакета и доставка ступеней к месту старта не поддаются простейшей автоматизации и, следовательно, требуют участия большего количества специалистов при подготовке такой ракеты к очередному полету.

Ракета должна использовать в качестве топлива водород и кислород, в результате горения которых на выходе из двигателя образуются экологически чистые продукты сгорания при высоком удельном импульсе. Экологическая чистота важна не только для работ, проводимых на старте, при заправке, в случае аварии, но и в не меньшей степени во избежание вредного воздействия продуктов сгорания на озоновый слой атмосферы.

Среди самых проработанных проектов одноступенчатых космических аппаратов за рубежом стоит выделить Skylon, DC-X, Lockheed Martin X-33 и Roton. Если Skylon и X-33 - это крылатые аппараты, то DC-X и Roton это ракеты вертикального взлета и вертикальной посадки. К тому же, оба они дошли до создания тестовых образцов. Если у Roton был только атмосферный прототип для отработки посадки на авторотации, то прототип DC-X совершил несколько полетов на высоту несколько километров на жидкостном ракетном двигателе (ЖРД) на жидких кислороде и водороде.

Техническое описание ракеты «Зея»

Для радикального снижения стоимости выведения грузов в космос «Лин Индастриал» предлагает создать ракету-носитель (РН) «Зея». Это одноступенчатая, многоразовая транспортная система с вертикальным взлетом и вертикальной посадкой. В ней используются экологически безопасные и высокоэффективные компоненты топлива: окислитель - жидкий кислород, горючее - жидкий водород.

РН состоит из бака окислителя (над которым размещается теплозащитный экран для входа в атмосферу и ротор системы мягкой посадки), отсека полезной нагрузки, приборного отсека, бака горючего, хвостового отсека с двигательной установкой и посадочного устройства. Баки горючего и окислителя - сегментально-конические, несущие, композитные. Наддув бака горючего осуществляется за счет газификации жидкого водорода, а бака окислителя - за счет сжатого гелия из баллонов высокого давления. Маршевая двигательная установка состоит из 36 расположенных по окружности двигателей и сопла внешнего расширения в виде центрального тела. Управление во время работы маршевого двигателя по тангажу и рысканию осуществляется с помощью дросселирования диаметрально расположенных двигателей, по крену - с помощью восьми двигателей на газообразных компонентах топлива, расположенных под отсеком полезной нагрузки. Для управления на участке орбитального полета используются двигатели на газообразных компонентах топлива.

Схема полета «Зеи» следующая. После выхода на опорную околоземную орбиту, ракета, если это необходимо, производит орбитальные маневры для выхода на целевую орбиту, после чего, открыв отсек полезной нагрузки (массой до 200 кг), отделяет ее.

В течение одного витка по околоземной орбите с момента старта, выдав тормозной импульс, «Зея» совершает посадку в районе космодрома пуска. Высокая точность посадки обеспечивается за счет использования аэродинамического качества, создаваемого формой ракеты, для бокового маневра и маневра по дальности. Мягкая посадка осуществляется за счет снижения с использованием принципа авторотации и восьми посадочных амортизаторов.

Экономика

Ниже приведена оценка сроков и стоимости работы до первого пуска:

  • Аванпроект: 2 месяца - €2 млн
  • Создание двигательной установки, разработка композитных баков и системы управления: 12 месяцев - €100 млн
  • Создание стендовой базы, постройка прототипов, подготовка и модернизация производства, эскизный проект: 12 месяцев - €70 млн
  • Отработка узлов и систем, испытания прототипа, огневые испытания летного изделия, технический проект: 12 месяцев - €143 млн

Итого: 3,2 года, €315 млн

По нашим оценкам, себестоимость одного пуска составит €0,15 млн, а стоимость межполетного обслуживания и накладных расходов - около €0,1 млн за межпусковой период. Если установить цену запуска в €35 тыс. за 1 кг (при себестоимости €1250/кг), что близко к цене запуска на ракете «Днепр» для иностранных заказчиков, то весь пуск (200 кг полезной нагрузки) обойдется заказчику в €7 млн. Таким образом, проект окупится за 47 пусков.

Вариант «Зеи» с двигателем на трех компонентах топлива

Еще один способ увеличить эффективность одноступенчатой РН - переход на ЖРД с тремя компонентами топлива.

С начала 1970-х годов в СССР и США изучалась концепция трехкомпонентных двигателей, которые сочетали бы в себе высокое значение удельного импульса при использовании водорода в качестве горючего, и более высокую усредненную плотность топлива (а, следовательно, меньший объем и вес топливных баков), характерную для углеводородного горючего. При запуске такой двигатель работал бы на кислороде и керосине, а на больших высотах переключался на использование жидких кислорода и водорода. Такой подход, возможно, позволит создать одноступенчатый космический носитель.

В нашей стране были разработаны трехкомпонентные двигатели РД-701, РД-704 и РД0750, однако они не были доведены до стадии создания опытных образцов. НПО «Молния» в 1980-х разработала Многоцелевую авиационно-космическую систему (МАКС) на ЖРД РД-701 с топливом кислород + керосин + водород. Расчеты и конструирование трехкомпонентных ЖРД велись и в Америке (см., например, Dual-Fuel Propulsion: Why it Works, Possible Engines, and Results of Vehicle Studies, авторов James A. Martin и Alan W. Wilhite, опубликованную в мае 1979 года в Am erican Institute of Aeronautics and Astronautics (AIAA) Paper No. 79-0878).

Мы полагаем, что для трехкомпонентной «Зеи» вместо традиционно предлагаемого для подобных ЖРД керосина следует использовать жидкий метан. На это есть множество причин:

  • «Зея» в качестве окислителя использует жидкий кислород, кипящий при температуре -183 градуса Цельсия, то есть в конструкции ракеты и заправочного комплекса уже используется криогенное оборудование, а значит не будет принципиальных сложностей в замене бака керосина на бак метана при -162 градусах Цельсия.
  • Метан по эффективности превосходит керосин. Удельный импульс (УИ, мера эффективности ЖРД - отношение создаваемого двигателем импульса к расходу топлива) топливной пары метан + жидкий кислород превосходит УИ пары керосин + жидкий кислород примерно на 100 м/с.
  • Метан дешевле керосина.
  • В отличие от керосиновых в двигателях на метане почти отсутствует коксование, то есть, проще говоря, образование трудно удаляемого нагара. А, значит, такие двигатели удобнее использовать в многоразовых системах.
  • При необходимости метан можно заменить схожим по характеристикам сжиженным природным газом (СПГ). СПГ почти полностью состоит из метана, обладает схожими физико-химическими характеристиками и немного проигрывает чистому метану по эффективности. При этом СПГ в 1,5–2 раза дешевле керосина и намного доступнее. Дело в том, что Россия покрыта обширной сетью газопроводов с природным газом. Достаточно отвести ветку к космодрому и построить небольшой комплекс по сжижению газа. Также в России построен завод по производству СПГ на Сахалине и два малотоннажных комплекса по сжижению в Санкт-Петербурге. Планируется постройка еще пяти заводов в разных точках РФ. При этом для производства ракетного керосина нужны особые сорта нефти, добытые на строго определенных месторождениях, запасы которых в России истощаются.

Схема работы трехкомпонентной РН следующая. Вначале сжигается метан - топливо с высокой плотностью, но сравнительно небольшим удельным импульсом в пустоте. Затем сжигается водород - топливо с низкой плотностью и максимально высоким удельным импульсом. Оба вида топлива сжигаются в единой двигательной установке. Чем выше доля топлива первого типа, тем меньше масса конструкции, но тем больше масса топлива. Соответственно, чем выше доля топлива второго вида, тем меньше потребный запас топлива, но тем больше масса конструкции. Следовательно, можно найти оптимальное соотношение между массами жидких метана и водорода.

Мы провели соответствующие расчеты, приняв коэффициент топливных отсеков для водорода равным 0,1, а для метана - 0,05. Коэффициент топливных отсеков - это отношение конечной массы топливного отсека к массе располагаемого запаса топлива. В конечную массу топливного отсека включаются массы гарантийного запаса топлива, невырабатываемые остатки компонентов ракетного топлива и масса газов наддува.

Расчеты показали, что трехкомпонентная «Зея» будет выводить на низкую околоземную орбиту 200 кг полезной нагрузки при массе своей конструкции в 2,1 т и стартовой массе 19,2 т. Двухкомпонентная «Зея» на жидком водороде сильно проигрывает: масса конструкции - 4,8 т, а стартовая масса - 37,8 т.

Основная задача ракеты заключается в том, чтобы задан­ному грузу (космическому аппарату или боевому заряду) сооб­щить определенную скорость. В зависимости от полезного груза и необходимой скорости назначается и запас топлива. Чем больше груз и скорость, тем больший запас топлива должен на­ходиться на борту, а, следовательно, тем большим оказывается стартовый вес ракеты, тем большая тяга требуется от двигателя.

Вместе с увеличением запаса топлива растет объем и вес ба­ков, с увеличением необходимой тяги увеличивается вес двига­теля; возрастает общий вес конструкции.

Основной недостаток одноступенчатой ракеты заключается в том, что заданная скорость сообщается не только полезному грузу, но по необходимости и всей конструкции в целом. При увеличении веса конструкции это ложится дополнительным бре­менем на энергетику одноступенчатой ракеты, что и накладывает очевидные ограничения на величину достижимой скорости. Частично эти трудности преодолеваются при переходе к много­ступенчатой схеме.

Под многоступенчатой понимается такая ра­кета, у которой в полете производится частичный отброс уже выполнивших свои функции двигательных установок или топлив­ных баков, а дополнительная скорость в дальнейшем сообщается только оставшейся массе конструкции и полезному грузу. Простейшая схема составной ракеты показана на рис. 1.7.

Вначале, на старте, работает наиболее мощный двигатель - двигатель первой ступени, способный поднять ракету со старто­вого устройства и сообщить ей определенную скорость. После того как будет израсходовано топливо, содержащееся в баках первой ступени, блоки этой ступени отбрасываются, а дальней­шее увеличение скорости достигается за счет работы двигателей следующей ступени. После того как выгорит топливо второй сту­пени, включается двигатель третьей ступени, а ставшие ненужными элементы конструкции предыдущей ступени должны быть отброшены. Теоретически описанный процесс деления может быть продолжен и далее. Однако на практике выбор числа ступеней следует рассматривать как предмет поиска оптимального конструктивного варианта. Увеличение числа ступеней при заданном полезном грузе ведет к уменьшению стартового веса ракеты, но при переходе от n ступеней к n+1 –ой выигрыш с числом n уменьшается, ухудшаются весовые характеристики отдельных блоков, возрастают экономические затраты и, совершенно очевидно, снижается надежность.

Рис. 1.7. Принципиальная схема составной (трехступенчатой) ракеты: 1- топливные баки,

2- двигатели, 3- полезный груз, 4- узлы стыковки блоков

В отличие от одноступенчатой, в составной ракете одновременно с полезным грузом заданную начальную скорость приобретает масса конструкции не всей ракеты, а только последней ступени. Массы же блоков предыдущей ступени получают меньшие скорости, и это приводит к экономии энергетических затрат.

Посмотрим, что дает нам составная ракета в идеальных условиях – за пределами атмосферы и вне поля тяготения.

Обозначим через μ к1 отношение массы ракеты без топлива первой ступени к стартовой массе всей ракеты, через μ к2 – отношение массы второй ступени без топлива этой ступени к той массе, которую имеет ракета непосредственно после сброса блоков первой ступени. Аналогично для последующих ступеней примем обозначения μ к3, μ к4 ...

После того, как выгорит топливо первой ступени, идеальная скорость ракеты будет:

После того как будет использовано топливо второй ступени, к этой скорости добавится следующая:

Каждая последующая ступень дает увеличение скорости, выражение которой строится по тому же образцу. В итоге получим:

где W e 1 , W e 2 , … - эффективные скорости истечения.

Таким образом, в рассмотренной схеме последовательного включения двигателей идеальная скорость составной ракеты определяется простым суммированием скоростей, достигнутых каждой ступенью. Сумма весов заправленных блоков всех по­следующих ступеней (включая и сам полезный груз) рассматри­вается при этом как полезный груз для предыдущей ступени. Схема включения двигателей может быть и не только последо­вательной. В некоторых составных ракетах двигатели различных ступеней могут работать и одновременно. О таких схемах мы поговорим позже.

В отличие от одноступенчатой, составная ракета на химиче­ском топливе в принципе уже решает задачу выведения спут­ника на околоземную орбиту. Первый искусственный спутник Земли был выведен в

1957 г. именно двухступенчатой ракетой. Двухступенчатая ракета выводила на орбиту все спутники серии «Космос» и «Интеркосмос». Для более тяжелых спутников тре­буется в ряде случаев трехступенчатая ракета.

Многоступенчатые ракеты открывают возможность и для до­стижения еще больших скоростей, необходимых для полета к Луне и планетам Солнечной системы. Здесь уже трехступенча­тыми ракетами не всегда можно обойтись. Потребная характеристическая скорость V x существенно возрастает, а задача фор­мирования космических орбит приобретает более сложный ха­рактер. Скорость вовсе не обязательно увеличивать. При выходе на орбиту спутника Луны или планеты относительную скорость надо уменьшить, а при посадке - погасить полностью. Двига­тели включаются многократно с длительными интервалами, в те­чение которых движение корабля определяется действием грави­тационного поля Солнца и ближайших небесных тел. Но сейчас и в дальнейшем мы ограничимся оценкой роли только земного тяготения.

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Отношение к паломничеству в мировых религиях Отношение к паломничеству в мировых религиях Почему князь Владимир крестил Русь? Почему князь Владимир крестил Русь? Сильнейшие молитвы на Медовый Спас,защищающие от бед! Сильнейшие молитвы на Медовый Спас,защищающие от бед!