Какая форма граней у тетраэдра. Как из бумаги сделать тетраэдр? План подготовки и проведения занятия

Жаропонижающие средства для детей назначаются педиатром. Но бывают ситуации неотложной помощи при лихорадке, когда ребенку нужно дать лекарство немедленно. Тогда родители берут на себя ответственность и применяют жаропонижающие препараты. Что разрешено давать детям грудного возраста? Чем можно сбить температуру у детей постарше? Какие лекарства самые безопасные?

Тетраэдр – самая простая фигура из многоугольников. Он состоит из четырех граней, каждая из которых представляет собой равносторонний треугольник, при этом каждая из сторон соединяется с другой всего лишь одной гранью. При изучении свойств этой трехмерной геометрической фигуры для наглядности лучше всего сделать модель тетраэдра из бумаги.

Как склеить тетраэдр из бумаги?

Для построения простого тетраэдра из бумаги нам понадобится:

  • собственно бумага (плотная, можно использовать картон);
  • транспортир;
  • линейка;
  • ножницы;
  • клей;
  • тетраэдр из бумаги, схема.

Ход работы

  • если бумага очень плотная, то по местам сгибов следует провести твердым предметом, например, ребром линейки;
  • для того, чтобы получить разноцветный тетраэдр, можно раскрасить грани или выполнить развертку на листах цветной бумаги.

Как из бумаги сделать тетраэдр без склеивания?

Предлагаем вашему вниманию мастер-класс, в котором рассказывается, как собрать 6 тетраэдров из бумаги в единый модуль при помощи техники оригами.

Нам понадобится:

  • 5 пар квадратных листов бумаги различных цветов;
  • ножницы.

Ход работы

  1. Каждый лист бумаги делим на три равные части, разрезаем и получаем полосы, соотношение сторон в которых 1 к 3. В результате получаем 30 полос, из которых и будем складывать модуль.
  2. Кладем полосу пред собой лицевой стороной вниз, вытянув по горизонтали. Сгибаем пополам, разворачиваем и подгибаем к середине края.
  3. На дальнем правом краю сгибаем угол так, чтобы сделать стрелку, поведя ее на 2-3 см от края.
  4. Аналогичным образом сгибаем левый угол (фото как из бумаги сделать тетраэдр 3).
  5. Перегибаем правый верхний угол маленького треугольничка, который получился в результате предыдущей операции. Таким образом, боковые стороны сложенного края окажутся под одинаковым углом.
  6. Разворачиваем полученную складку.
  7. Разворачиваем левый уголок и по уже имеющимся линиям сгиба заворачиваем угол внутрь как показано на фото.
  8. В правом углу сгибаем верхний край вниз таким образом, чтобы он пересекся со складкой, сделанной во время операции №3.
  9. Внешний край еще раз заворачиваем направо, используя складку, выполненную в результате операции №3.
  10. Предыдущие операции повторяем с другого конца полоски, но так, чтобы маленькие складочки оказались на параллельных концах полоски.
  11. Полученную полоску складываем пополам по длине и даем ей немого раскрыться самопроизвольно. Точный угол раскрытия станет понятен потом, при окончательной сборке модели. Элемент готов, теперь аналогичным образом делаем еще 29.
  12. Звено переворачиваем таким образом, чтобы во время сборки была видна его внешняя сторона. Соединяем два звена, вставив язычок в кармашек, образованный маленьким внутренним углом.
  13. Соединенные звенья должны образовывать угол в 60 ⁰, под которым будут присоединяться и другие звенья (фото как из бумаги сделать тетраэдр 13).
  14. Добавляем третье звено ко второму, а второе соединяем с первым. Получается конец фигуры, на вершине которой соединяются все три ее звена.
  15. Аналогичным образом добавляем еще три звена. Первый тетраэдр готов.
  16. Углы у готовой фигуры могут быть не совсем одинаковыми, поэтому для более точной подгонки следует оставлять открытыми отдельные углы всех последующих тетраэдров.
  17. Между собой тетраэдры следует соединять так, чтобы угол одного проходил сквозь отверстие в другом.
  18. Три соединенных между собой тетраэдра.
  19. Четыре соединенных между собой тетраэдра.
  20. Модуль из пяти тетраэдров готов.

Если вы справились с тетраэдром, можно продолжить и смастерить

Примечание . Это часть урока с задачами по геометрии (раздел стереометрия, задачи о пирамиде). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение . Для простых подкоренных выражений может использоваться знак "√" . Правильный тетраэдр - это правильная треугольная пирамида у которой все грани являются равносторонними треугольниками.

У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны

У тетраэдра 4 грани, 4 вершины и 6 ребер.

Основные формулы для правильного тетраэдра приведены в таблице.

Где:
S - Площадь поверхности правильного тетраэдра
V - объем
h - высота, опущенная на основание
r - радиус вписанной в тетраэдр окружности
R - радиус описанной окружности
a - длина ребра

Практические примеры

Задача .
Найдите площадь поверхности треугольной пирамиды, у которой каждое ребро равно √3

Решение .
Поскольку все ребра треугольной пирамиды равны - она является правильной. Площадь поверхности правильной треугольной пирамиды равна S = a 2 √3 .
Тогда
S = 3√3

Ответ : 3√3

Задача .
Все ребра правильной треугольной пирамиды равны 4 см. Найдите объем пирамиды

Решение .
Поскольку в правильной треугольной пирамиде высота пирамиды проецируется в центр основания, который одновременно является центром описанной окружности, то

AO = R = √3 / 3 a
AO = 4√3 / 3

Таким образом, высота пирамиды OM может быть найдена из прямоугольного треугольника AOM

AO 2 + OM 2 = AM 2
OM 2 = AM 2 - AO 2
OM 2 = 4 2 - (4√3 / 3) 2
OM 2 = 16 - 16/3
OM = √(32/3)
OM = 4√2 / √3

Объем пирамиды найдем по формуле V = 1/3 Sh
При этом площадь основания найдем по формуле S = √3/4 a 2

V = 1/3 (√3 / 4 * 16) (4√2 / √3)
V = 16√2 / 3

Ответ : 16√2 / 3 см

Тетраэдр, или треугольная пирамида, - простейший из многогранников, подобно тому как треугольник - простейший из многоугольников на плоскости. Слово «тетраэдр» образовано из двух греческих слов: tetra - «четыре» и hedra - «основание», «грань». Тетраэдр задается четырьмя своими вершинами - точками , не лежащими в одной плоскости; грани тетраэдра - четыре треугольника; ребер у тетраэдра шесть. В отличие от произвольной -угольной пирамиды (при ) в качестве основания тетраэдра может быть выбрана любая его грань.

Многие свойства тетраэдров сходны с соответствующими свойствами треугольников. В частности, 6 плоскостей, проведенных через середины ребер тетраэдра перпендикулярно к ним, пересекаются в одной точке. В этой же точке пересекаются и 4 прямые, проведенные через центры описанных около граней окружностей перпендикулярно к плоскостям граней, и является центром описанной около тетраэдра сферы (рис. 1). Аналогично 6 биссекторных полуплоскостей тетраэдра, т. е. полуплоскостей, делящих двугранные углы при ребрах тетраэдра пополам, тоже пересекаются в одной точке - в центре вписанной в тетраэдр сферы - сферы, касающейся всех четырех граней тетраэдра. Любой треугольник имеет, вдобавок к вписанной, еще 3 вневписанные окружности (см. Треугольник), а вот тетраэдр может иметь любое число – от 4 до 7 - вневписанных сфер, т.е. сфер, касающихся плоскостей всех четырех граней тетраэдра. Всегда существуют 4 сферы, вписанные в усеченные трехгранные углы, один из которых показан на рис. 2, справа. Еще 3 сферы могут быть вписаны (не всегда!) в усеченные двугранные углы при ребрах тетраэдра - один из них показан на рис. 2, слева.

Для тетраэдра существует еще одна возможность его взаимного расположения со сферой - касание с некоторой сферой всеми своими ребрами (рис. 3). Такая сфера - иногда ее называют «полувписанной» - существует лишь в том случае, когда суммы длин противоположных ребер тетраэдра равны: (рис. 3).

Для любого тетраэдра справедлив аналог теоремы о пересечении медиан треугольника в одной точке. Именно, 6 плоскостей, проведенных через ребра тетраэдра и середины противолежащих ребер, пересекаются в одной точке - в центроиде тетраэдра (рис. 4). Через центроид проходят также 3 «средние линии» - отрезки, соединяющие середины трех пар противоположных ребер, причем они делятся точкой пополам. Наконец, через проходят и 4 «медианы» тетраэдра - отрезки, соединяющие вершины с центроидами противолежащих граней, причем они делятся в точке в отношении 3:1, считая от вершин.

Важнейшее свойство треугольника - равенство (или ) - разумного «тетраэдрического» аналога не имеет: сумма всех 6 двугранных углов тетраэдра может принимать любое значение между и . (Конечно, сумма всех 12 плоских углов тетраэдра - по 3 при каждой вершине - не зависит от тетраэдра и равна .)

Треугольники принято классифицировать по степени их симметричности: правильные или равносторонние треугольники имеют три оси симметрии, равнобедренные - одну. Классификация тетраэдров по степени симметричности богаче. Самый симметричный тетраэдр - правильный, ограниченный четырьмя правильными треугольниками. Он имеет 6 плоскостей симметрии - они проходят через каждое ребро перпендикулярно противолежащему ребру - и 3 оси симметрии, проходящие через середины противолежащих ребер (рис. 5). Менее симметричны правильные треугольные пирамиды (3 плоскости симметрии, рис. 6) и равногранные тетраэдры (т.е. тетраэдры с равными гранями - 3 оси симметрии, рис. 7).

На этом уроке мы рассмотрим тетраэдр и его элементы (ребро тетраэдра, поверхность, грани, вершины). И решим несколько задач на построение сечений в тетраэдре, используя общий метод для построения сечений.

Тема: Параллельность прямых и плоскостей

Урок: Тетраэдр. Задачи на построение сечений в тетраэдре

Как построить тетраэдр? Возьмем произвольный треугольник АВС . Произвольную точку D , не лежащую в плоскости этого треугольника. Получим 4 треугольника. Поверхность, образованная этими 4 треугольниками, и называется тетраэдром (Рис. 1.). Внутренние точки, ограниченные этой поверхностью, также входят в состав тетраэдра.

Рис. 1. Тетраэдр АВСD

Элементы тетраэдра
А, B , C , D - вершины тетраэдра .
AB , AC , AD , BC , BD , CD - ребра тетраэдра .
ABC , ABD , BDC , ADC - грани тетраэдра .

Замечание: можно принять плоскость АВС за основание тетраэдра , и тогда точка D является вершиной тетраэдра . Каждое ребро тетраэдра является пересечением двух плоскостей. Например, ребро АВ - это пересечение плоскостей АВ D и АВС . Каждая вершина тетраэдра - это пересечение трех плоскостей. Вершина А лежит в плоскостях АВС , АВ D , А D С . Точка А - это пересечение трех означенных плоскостей. Этот факт записывается следующим образом: А = АВС АВ D АС D .

Тетраэдр определение

Итак, тетраэдр - это поверхность, образованная четырмя треугольниками.

Ребро тетраэдра - линия перечесения двух плоскостей тетраэдра.

Составьте из 6 спичек 4 равных треугольника. На плоскости решить задачу не получается. А в пространстве это сделать легко. Возьмем тетраэдр. 6 спичек - это его ребра, четыре грани тетраэдра и будут четырьмя равными треугольниками. Задача решена.

Дан тетраэдр АВС D . Точка M принадлежит ребру тетраэдра АВ , точка N принадлежит ребру тетраэдра В D и точка Р принадлежит ребру D С (Рис. 2.). Постройте сечение тетраэдра плоскостью MNP .

Рис. 2. Рисунок к задаче 2 - Построить сечение тетраэдра плоскостью

Решение :
Рассмотрим грань тетраэдра D ВС . В этой грани точки N и P принадлежат грани D ВС , а значит, и тетраэдру. Но по условию точки N, P принадлежат секущей плоскости. Значит, NP - это линия пересечения двух плоскостей: плоскости грани D ВС и секущей плоскости. Предположим, что прямые NP и ВС не параллельны. Они лежат в одной плоскости D ВС. Найдем точку пересечения прямых NP и ВС . Обозначим ее Е (Рис. 3.).

Рис. 3. Рисунок к задаче 2. Нахождение точки Е

Точка Е принадлежит плоскости сечения MNP , так как она лежит на прямой , а прямая целиком лежит в плоскости сечения MNP .

Также точка Е лежит в плоскости АВС , потому что она лежит на прямой ВС из плоскости АВС .

Получаем, что ЕМ - линия пересечения плоскостей АВС и MNP, так как точки Е и М лежат одновременно в двух плоскостях - АВС и MNP. Соединим точки М и Е , и продолжим прямую ЕМ до пересечения с прямой АС . Точку пересечения прямых ЕМ и АС обозначим Q .

Итак, в этом случае NPQМ - искомое сечение.

Рис. 4. Рисунок к задаче 2.Решение задачи 2

Рассмотрим теперь случай, когда NP параллельна BC . Если прямая NP параллельна какой-нибудь прямой, например, прямой ВС из плоскости АВС , то прямая NP параллельна всей плоскости АВС .

Искомая плоскость сечения проходит через прямую NP , параллельную плоскости АВС , и пересекает плоскость по прямой МQ . Значит, линия пересечения МQ параллельна прямой NP . Получаем, NPQМ - искомое сечение.

Точка М лежит на боковой грани А D В тетраэдра АВС D . Постройте сечение тетраэдра плоскостью, которое проходит через точку М параллельно основанию АВС .

Рис. 5. Рисунок к задаче 3 Построить сечение тетраэдра плоскостью

Решение:
Секущая плоскость φ параллельна плоскости АВС по условию, значит, эта плоскость φ параллельна прямым АВ , АС , ВС .
В плоскости АВ D через точку М проведем прямую PQ параллельно АВ (рис. 5). Прямая PQ лежит в плоскости АВ D . Аналогично в плоскости АС D через точку Р проведем прямую РR параллельно АС . Получили точку R . Две пересекающиеся прямые PQ и РR плоскости РQR соответственно параллельны двум пересекающимся прямым АВ и АС плоскости АВС , значит, плоскости АВС и РQR параллельны. РQR - искомое сечение. Задача решена.

Дан тетраэдр АВС D . Точка М - точка внутренняя, точка грани тетраэдра АВ D . N - внутренняя точка отрезка D С (Рис. 6.). Построить точку пересечения прямой NM и плоскости АВС .

Рис. 6. Рисунок к задаче 4

Решение:
Для решения построим вспомогательную плоскость D МN . Пусть прямая D М пересекает прямую АВ в точке К (Рис. 7.). Тогда, СК D - это сечение плоскости D МN и тетраэдра. В плоскости D МN лежит и прямая NM , и полученная прямая СК . Значит, если NM не параллельна СК , то они пересекутся в некоторой точке Р . Точка Р и будет искомая точка пересечения прямой NM и плоскости АВС .

Рис. 7. Рисунок к задаче 4. Решение задачи 4

Дан тетраэдр АВС D . М - внутренняя точка грани АВ D . Р - внутренняя точка грани АВС . N - внутренняя точка ребра D С (Рис. 8.). Построить сечение тетраэдра плоскостью, проходящей через точки М , N и Р .

Рис. 8. Рисунок к задаче 5 Построить сечение тетраэдра плоскостью

Решение:
Рассмотрим первый случай, когда прямая MN не параллельна плоскости АВС . В прошлой задаче мы нашли точку пересечения прямой MN и плоскости АВС . Это точка К , она получена с помощью вспомогательной плоскости D МN , т.е. мы проводим D М и получаем точку F . Проводим СF и на пересечении MN получаем точку К .

Рис. 9. Рисунок к задаче 5. Нахождение точки К

Проведем прямую КР . Прямая КР лежит и в плоскости сечения, и в плоскости АВС . Получаем точки Р 1 и Р 2 . Соединяем Р 1 и М и на продолжении получаем точку М 1 . Соединяем точку Р 2 и N . В результате получаем искомое сечение Р 1 Р 2 NМ 1 . Задача в первом случае решена.
Рассмотрим второй случай, когда прямая MN параллельна плоскости АВС . Плоскость МNР проходит через прямую МN параллельную плоскости АВС и пересекает плоскость АВС по некоторой прямой Р 1 Р 2 , тогда прямая Р 1 Р 2 параллельна данной прямой MN (Рис. 10.).

Рис. 10. Рисунок к задаче 5. Искомое сечение

Теперь проведем прямую Р 1 М и получим точку М 1 . Р 1 Р 2 NМ 1 - искомое сечение.

Итак, мы рассмотрели тетраэдр, решили некоторые типовые задачи на тетраэдр. На следующем уроке мы рассмотрим параллелепипед.

1. И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М. : Мнемозина, 2008. - 288 с. : ил. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни)

2. Шарыгин И. Ф. - М.: Дрофа, 1999. - 208 с.: ил. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений

3. Е. В. Потоскуев, Л. И. Звалич. - 6-е издание, стереотип. - М. : Дрофа, 008. - 233 с. :ил. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики

Дополнительные веб-ресурсы

2. Как построить сечение тетраэдра. Математика ().

3. Фестиваль педагогических идей ().

Сделай дома задачи по теме "Тетраэдр", как находить ребро тетраэдра, грани тетраэдра, вершины и поверхность тетраэдра

1. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) И. М. Смирнова, В. А. Смирнов. - 5-е издание, исправленное и дополненное - М.: Мнемозина, 2008. - 288 с.: ил. Задания 18, 19, 20 стр. 50

2. Точка Е середина ребра МА тетраэдра МАВС . Постройте сечение тетраэдра плоскостью, проходящей через точки В, С и Е .

3. В тетраэдре МАВС точка М принадлежит грани АМВ, точка Р - грани ВМС, точка К - ребру АС. Постройте сечение тетраэдра плоскостью, проходящей через точки М, Р, К.

4. Какие фигуры могут получиться в результате пересечения плоскостью тетраэдра?

Поддержите проект — поделитесь ссылкой, спасибо!
Читайте также
Исследовательская деятельность в дополнительном образовании Показатели высшей квалификации педагога дополнительного образования Исследовательская деятельность в дополнительном образовании Показатели высшей квалификации педагога дополнительного образования Конспект занятия по обучению грамоте в старшей группе Конспект занятия по обучению грамоте в старшей группе Современный утренник 8 марта в доу Современный утренник 8 марта в доу